Skip to main content
Log in

Behaviors of quantum correlation for accelerated atoms coupled with a fluctuating massless scalar field with a perfectly reflecting boundary

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we study the dynamics of quantum correlation for two uniformly accelerated atoms immersed in a bath of fluctuating massless scalar field with a perfectly reflecting plane boundary in the Minkowski vacuum. Firstly, the master equation that governs the system evolution is derived. Then we discuss the generation, revival and decay of quantum correlation for initial zero-correlation state and initial entangled state in various conditions and models. We contrast the behaviors of quantum correlation of accelerated atoms with that of static atoms in a thermal bath at the corresponding Unruh temperature and also make a comparison between behaviors of quantum correlation and entanglement behaviors. We find that behaviors of quantum correlation of uniformly accelerated atoms present some features distinct from that of static atoms immersed in a thermal bath, and behaviors of quantum correlation are more robust than that of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  2. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  4. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  5. Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  6. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  7. Pirandola, S.: Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)

    Article  ADS  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  9. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  11. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)

    Article  ADS  Google Scholar 

  14. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  15. Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  17. Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  18. Qiu, L., Liu, Z.: Hierarchy, factorization law of two measurement-induced nonlocalities and their performances in quantum phase transition. Quantum Inf. Process. 15, 2053 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  20. Benatti, F., Floreanini, R.: Entanglement generation in uniformly accelerating atoms: reexamination of the Unruh effect. Phys. Rev. A 70, 012112 (2004)

    Article  ADS  Google Scholar 

  21. Zhang, J.L., Yu, H.W.: Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary. Phys. Rev. A 75, 012101 (2007)

    Article  ADS  Google Scholar 

  22. Zhang, J.L., Yu, H.W.: Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary. Phys. Rev. D 75, 104014 (2005)

    Article  ADS  Google Scholar 

  23. Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yang, Y.Q., Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations. Phys. Rev. A 94, 032337 (2016)

    Article  ADS  Google Scholar 

  25. Salton, G., Mann, R.B., Menicucci, N.C.: Acceleration-assisted entanglement harvesting and rangefinding. arXiv:1408.1395 (2015)

  26. Huang, Z.M.: Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  28. Yu, H., Wu, P.X.: Quantum fluctuations of the light cone in four-dimensional spacetime with parallel plane boundaries. Phys. Rev. D 68, 084019 (2003)

    Article  ADS  Google Scholar 

  29. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  30. Chen, Q., Zhang, C., Yu, X., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  31. Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  32. Huang, Z.M., Situ, H.Z., Zhang, C.: Quantum coherence and correlation in spin models with Dzyaloshinskii-Moriya interaction. Int. J. Theor. Phys. 56, 2178 (2017)

    Article  MathSciNet  Google Scholar 

  33. Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii-Moriya interaction. Phys. Rev. A 84, 042302 (2011)

    Article  ADS  Google Scholar 

  34. Martínez, E.M., Smith, A.R.H., Terno, D.R.: Spacetime structure and vacuum entanglement. Phys. Rev. D 93, 044001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. Huang, Z.M.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Huang, Z.M., Tian, Z.H.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Huang, Z.M., Tian, Z.H.: Dynamics of quantum correlation in de Sitter spacetime. J. Phys. Soc. Jpn. 86, 094003 (2017)

    Article  ADS  Google Scholar 

  38. Huang, Z.M., Zhang, C., Zhang, W., Zhao, L.H.: Equivalence of quantum resource measures for X states. Int. J. Theor. Phys. 56, 3615 (2017)

    Article  Google Scholar 

  39. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)

    Article  ADS  Google Scholar 

  40. Huang, Z.M., Situ, H.Z.: Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  41. Huang, Z.M., Ye, Y.Y., Luo, D.R.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17, 101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. Huang, Z.M.: Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction. Laser Phys. Lett. 15, 025203 (2018)

    Article  ADS  Google Scholar 

  43. Huang, Z.M.: Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field. Quantum Inf. Process 17, 73 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. Huang, Z.M.: Protecting quantum Fisher information in curved space-time. Eur. Phys. J. Plus 133, 101 (2018)

    Article  Google Scholar 

  45. Huang, Z.M., Situ, H.Z.: Exploration of entropic uncertainty relation for two accelerating atoms immersed in a bath of electromagnetic field. Quantum Inf. Process. 18, 38 (2019)

    Article  ADS  Google Scholar 

  46. Sanchez, N.: Comments on quantum detection and the anisotropy of thermal radiation by accelerated observers. Phys. Lett. 112A, 133 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  47. Kolbenstvedt, H.: Anisotropy of thermal radiation by accelerated detectors; an aberration effect. Phys. Lett. A 122, 292 (1987)

    Article  ADS  Google Scholar 

  48. Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. Albash, T., Boixo, S., Lidar, D.A., Zanardi, P.: Quantum adiabatic Markovian master equations. New J. Phys. 14, 123016 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  50. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  51. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  52. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  53. Birrell, N.D., Davies, P.C.W.: Quantum fields Theory in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  54. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation (61871205), the Innovation Project of Department of Education of Guangdong Province of China (2017KTSCX180), the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010) and the Guangdong Philosophy and Social Science Planning Project (GD15XGL55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: some relevant results of Ref. [26]

Appendix: some relevant results of Ref. [26]

(See Figs. 5, 6, 7 and 8.)

Fig. 5
figure 5

TMIN as function of \(\omega t\) for two atoms in the ground state \(|00\rangle \) when two-atom distance \(L\rightarrow 0\) for a different temperatures with \(\omega z=1\) and b different distances from the boundary with \(T/\omega =\frac{1}{2}\). (corresponding to Fig. 2 of Ref. [26])

Fig. 6
figure 6

TMIN as function of \(\omega t\) for two atoms in the ground state \(|00\rangle \) when two atoms are placed very far from the boundary (\(z\rightarrow \infty \)) for a different temperatures with \(L\omega =\frac{1}{2}\) and b different two-atom distances with \(T/\omega =\frac{3}{10}\). (corresponding to Fig. 3 of Ref. [26])

Fig. 7
figure 7

TMIN as function of \(\omega t\) for two atoms in the ground state \(|00\rangle \) for a different temperatures with \(L\omega =1\) and \(z\omega =2\), b different two-atom distances with \(T/\omega =\frac{1}{2}\) and \(z\omega =1\) and c different distances from boundary with \(T/\omega =\frac{1}{2}\) and \(L\omega =\frac{1}{2}\). (corresponding to Fig. 6 of Ref. [26])

Fig. 8
figure 8

a TMIN as function of \(\omega t\) for the initial Werner state \(p|\phi _1\rangle \langle \phi _1|+(1-p)\frac{I}{4}\) case when \(p=\frac{1}{2}\) for different temperatures with \(L\omega =\frac{1}{2}\) and \(z\omega =1\). b TMIN as function of \(\omega t\) for different two-atom distances with \(T/\omega =1\) and \(z\omega =1\). c TMIN as function of \(\omega t\) for different distances from boundary with \(T/\omega =1\) and \(\omega L=1\). (corresponding to Fig. 7 of Ref. [26])

In Ref. [26], we study the behaviors of quantum correlation for two atoms immersed in a thermal bath of quantum scalar fields in the presence of a perfectly reflecting plane boundary. In this paper, we obtain the relative coefficients

$$\begin{aligned}&A_1={\omega \over 4\pi }{1+e^{-\beta {\omega }}\over 1-e^{-\beta {\omega }}}\bigg [1-{\sin (2z\omega )\over 2z\omega }\bigg ]\;,\nonumber \\&A_2={\omega \over 4\pi }{1+e^{-\beta {\omega }}\over 1-e^{-\beta {\omega }}}\bigg [{\sin (L\omega )\over {L\omega }} -{\sin (\sqrt{L^2+4z^2}\omega )\over \sqrt{L^2+4z^2}\omega }\bigg ], \nonumber \\&B_1={\omega \over 4\pi }\bigg [1-{\sin (2z\omega )\over 2z\omega }\bigg ]\;,\qquad \qquad \qquad B_2={\omega \over 4\pi }\bigg [{\sin (L\omega )\over {L\omega }}-{\sin (\sqrt{L^2+4z^2}\omega ) \over \sqrt{L^2+4z^2}\omega }\bigg ]. \end{aligned}$$
(32)

In the equilibrium state, we get

$$\begin{aligned} a_{1,1}(\infty )\,=\, a_{2,2}(\infty )\,=\,0,a_{0,3}(\infty )\,=\,a_{3,0}(\infty )\,=\, \frac{1-e^{\omega /T}}{e^{\omega /T}+1},a_{3,3}(\infty )\,=\,\frac{\left( e^{\omega /T}-1\right) ^2}{\left( e^{\omega /T}+1\right) ^2}. \end{aligned}$$
(33)

When two atoms are placed very close to the reflecting boundary (\(z\rightarrow 0\)), it is found that \(A_1=A_2=B_1=B_2=0\). There is no generated quantum correlation.

When temperature \(T\rightarrow 0\), we get

$$\begin{aligned} A_1=B_1={\omega \over 4\pi }\bigg [1-{\sin (2z\omega )\over 2z\omega }\bigg ]\;,\quad A_2= B_2={\omega \over 4\pi }\bigg [{\sin (L\omega )\over {L\omega }}-{\sin (\sqrt{L^2+4z^2}\omega )\over \sqrt{L^2+4z^2}\omega }\bigg ]. \end{aligned}$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Behaviors of quantum correlation for accelerated atoms coupled with a fluctuating massless scalar field with a perfectly reflecting boundary. Quantum Inf Process 18, 187 (2019). https://doi.org/10.1007/s11128-019-2310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2310-x

Keywords

Navigation