Skip to main content
Log in

Simultaneous dense coding affected by fluctuating massless scalar field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hao, J.C., Li, C.F., Guo, G.C.: Probabilistic dense coding and teleportation. Phys. Lett. A 278, 113 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A 34, 7081 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Situ, H.Z.: Controlled simultaneous teleportation and dense coding. Int. J. Theor. Phys. 53, 1003 (2014)

    Article  MATH  Google Scholar 

  5. Zhang, C., Situ, H.Z., Li, Q., He, G.P.: Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states. Int. J. Quantum Inf. 14, 1650023 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen, G.: Classical information capacity of superdense coding. Phys. Rev. A 63, 022302 (2001)

    Article  ADS  Google Scholar 

  7. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001)

    Article  ADS  Google Scholar 

  8. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  9. Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71, 012311 (2005)

    Article  ADS  Google Scholar 

  10. Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)

    Article  ADS  Google Scholar 

  11. Situ, H.Z.: Dense coding process with imperfect encoding operations. Int. J. Theor. Phys. 52, 3779 (2013)

    Article  MATH  Google Scholar 

  12. Wang, M.Y., Yan, F.L., Gao, T., Li, Y.C.: Simultaneous quantum state teleportation via the locked entanglement channel. Int. J. Quantum Inf. 6, 201 (2008)

    Article  MATH  Google Scholar 

  13. Situ, H.Z., Qiu, D.W.: Simultaneous dense coding. J. Phys. A Math. Theor. 43, 055301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Situ, H.Z., Qiu, D.W., Mateus, P., Paunkovic, N.: Secure N-dimensional simultaneous dense coding and applications. Int. J. Quantum Inf. 13, 1550051 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benatti, F., Floreanini, R.: Controlling entanglement generation in external quantum fields. J. Opt. B Quantum Semiclassical Opt. 7, S429 (2005)

    Article  ADS  Google Scholar 

  16. Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)

    Article  ADS  MATH  Google Scholar 

  18. Huang, Z.M., Zhang, C., Situ, H.Z.: Performance analysis of simultaneous dense coding protocol under decoherence. Quantum Inf. Process. 16, 227 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Phillips, N.G., Hu, B.L.: Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation. Phys. Rev. D 62, 084017 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ford, L.H., Roman, T.A.: Minkowski vacuum stress tensor fluctuations. Phys. Rev. D 72, 105010 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Pozas-Kerstjens, A., Martín-Martínez, E.: Harvesting correlations from the quantum vacuum. Phys. Rev. D 92, 064042 (2015)

    Article  ADS  Google Scholar 

  22. Pozas-Kerstjens, A., Martín-Martínez, E.: Entanglement harvesting from the electromagnetic vacuum with hydrogenlike atoms. Phys. Rev. D 94, 064074 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016)

    Article  ADS  MATH  Google Scholar 

  26. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yeo, Y., An, J.H., Oh, C.H.: Non-Markovian effects on quantum-communication protocols. Phys. Rev. A 82, 032340 (2010)

    Article  ADS  Google Scholar 

  28. Jun, J.W.: Non-Markovian effects on multiparticle entanglement swapping. Eur. Phys. J. D 67, 237 (2013)

    Article  ADS  Google Scholar 

  29. Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14, 3465 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Audretsch, J., Muller, R.: Spontaneous excitation of an accelerated atom: the contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A 50, 1755 (1994)

    Article  ADS  Google Scholar 

  32. Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic, San Diego (1994)

    Google Scholar 

  33. Ficek, Z., Tanas, R.: Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 372, 369 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wang, G., Li, T., Deng, F.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305 (2015)

    Article  ADS  MATH  Google Scholar 

  35. Yang, Z.G., Wu, T.T., Liu, J.M.: Remote state preparation via photonic Faraday rotation in low-Q cavities. Acta Phys. Sin. 65, 020302 (2016)

    Google Scholar 

  36. Tian, Z., Jing, J.: Geometric phase of two-level atoms and thermal nature of de Sitter spacetime. JHEP 04, 109 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  37. Tian, Z., Jing, J.: Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime. Ann. Phys. 350, 1 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science Foundation for Young Teachers of Wuyi University (Grant No. 2015zk01), the Doctoral Research Foundation of Wuyi University (2017BS07), and the Doctoral Research Foundation of Wuyi University (2016BS02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Ye, Y. & Luo, D. Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf Process 17, 101 (2018). https://doi.org/10.1007/s11128-018-1872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1872-3

Keywords

Navigation