Skip to main content
Log in

Cryptanalysis and improvement of dynamic quantum secret sharing protocol based on two-particle transform of Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Du and Bao proposed a quantum secret sharing protocol based on two-particle transform of Bell states. We study the security of the proposed protocol and find that it is not secure, that is, the two dishonest agents, Bob and Zach, can collude to obtain Alice’s secret messages without the help of the other agents. Finally, we give a possible improvement of the proposed protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In a Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  2. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  3. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  5. Gao, G.: Quantum key distribution by comparing Bell states. Opt. Commun. 281, 876 (2008)

    Article  ADS  Google Scholar 

  6. Gao, G.: Quantum key distribution scheme with high efficiency. Commun. Theor. Phys. 51, 820 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  8. Gong, L.H., Song, H.C., He, C.S., Liu, Y., Zhou, N.R.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89, 035101 (2014)

    Article  ADS  Google Scholar 

  9. Yang, X., et al.: Measurement-device-independent entanglement-based quantum key distribution. Phys. Rev. A 93, 052303 (2016)

    Article  ADS  Google Scholar 

  10. Long, G.L., Liu, X.X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  12. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  13. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  14. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  15. Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149 (2007)

    Article  ADS  Google Scholar 

  16. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  17. Wang, C., Xiao, L., Wang, W.Y., Zhang, G.Y., Long, G.L.: Quantum key distribution using polarization and frequency hyperentangled photons. J. Opt. Soc. Am. B. 26, 2072 (2009)

    Article  ADS  Google Scholar 

  18. Gao, G., Fang, M., Wang, Y., Zang, D.J.: A ping-pong quantum dialogue scheme using genuine four-particle entangled states. Int. J. Theor. Phys. 50, 3089 (2011)

    Article  MathSciNet  Google Scholar 

  19. Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)

    Article  ADS  Google Scholar 

  20. Dong, L., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905 (2011)

    Article  ADS  Google Scholar 

  21. Kao, S.H., Hwang, T.: Cryptanalysis and improvement of controlled secure direct communication. Chin. Phys. B 22, 060308 (2013)

    Article  ADS  Google Scholar 

  22. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30 (2013)

    Article  ADS  Google Scholar 

  23. Gong, L.H., Liu, Y., Zhou, N.R.: Novel quantum virtual private network scheme for PON via quantum secure direct communication. Int. J. Theor. Phys. 52, 3260 (2013)

    Article  MathSciNet  Google Scholar 

  24. Gao, G.: Bidirectional quantum secure communication based on one-dimensional four-particle cluster states. Int. J. Theor. Phys. 53, 2282 (2014)

    Article  MathSciNet  Google Scholar 

  25. Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and shared auxiliary logical Bell state. Quantum Inf. Process. 14, 1469 (2015)

    Article  ADS  Google Scholar 

  26. Zhang, W., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  27. Hillery, M., Buzk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 67, 044302 (2003)

    Article  ADS  Google Scholar 

  29. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  30. Deng, F.G., Li, X.H., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  31. Wang, H.F., et al.: Improving the security of multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A 358, 11 (2006)

    Article  ADS  Google Scholar 

  32. Deng, F.G., et al.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39, 14089 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. Xue, Z.Y., Yi, Y.M., Cao, Z.L.: Scheme for sharing classical information via tripartite entangled states. Chin. Phys. B 15, 01421 (2006)

    Article  Google Scholar 

  34. Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65 (2008)

    Article  ADS  Google Scholar 

  35. Guo, Y., Zeng, G.H., Chen, Z.G.: Multiparty quantum secret sharing of quantum states using entanglement states. Chin. Phys. Lett. 24, 863 (2007)

    Article  ADS  Google Scholar 

  36. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. Yang, Y.G., Wen, Q.Y.: Circular threshold quantum secret sharing. Chin. Phys. B 17, 0419 (2008)

    Article  ADS  Google Scholar 

  38. Gao, G.: Reexamining the security of the improved quantum secret sharing scheme. Opt. Commun. 282, 4464 (2009)

    Article  ADS  Google Scholar 

  39. Gao, G.: Multiparty quantum secret sharing using two-photon three-dimensional Bell states. Commun. Theor. Phys. 52, 421 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  40. Zhu, Z.C., Zhang, Y.Q.: Cryptanalysis and improvement of a quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations. Chin. Phys. Lett. 27, 060303 (2010)

    Article  ADS  Google Scholar 

  41. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Three-party quantum secret sharing of secure direct communication based on \(\chi \)-type entangled states. Chin. Phys. B 19, 050306 (2010)

    Article  ADS  Google Scholar 

  42. Gao, G.: Cryptanalysis of multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 283, 2997 (2010)

    Article  ADS  Google Scholar 

  43. Yang, S., Chen, X.B., Yang, Y.X.: Attack on the enhanced multiparty quantum secret sharing. Commun. Theor. Phys. 58, 51 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  44. Chen, X.B., Yang, S., Su, Y., Yang, Y.X.: Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Phys. Scr. 86, 055002 (2012)

    Article  ADS  Google Scholar 

  45. Jia, H.Y., Wen, Q.Y., Gao, F., Qin, S.J., Guo, F.Z.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  46. Zhu, Z.C., Zhang, Y.Q., Fu, A.M.: Cryptanalysis and improvement of a quantum secret sharing scheme based on \(\chi \)-type entangled states. Chin. Phys. B 21, 010307 (2012)

    Article  ADS  Google Scholar 

  47. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Cryptanalysis of a new circular quantum secret sharing protocol for remote agents. Quantum Inf. Process. 12, 1173–1183 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  48. Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdropping-check character. Quantum Inf. Process. 12, 55 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  49. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  50. Wang, M.M., Chen, X.B., Yang, Y.X.: Comment on High-dimensional deterministic multiparty quantum secret sharing without unitary operations. Quantum Inf. Process. 12, 785–792 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  51. Wang, M.M., Chen, X.B., Yang, Y.X.: Quantum secret sharing for general access structures based on multiparticle entanglements. Quantum Inf. Process. 13, 429 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  52. Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14, 4211 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  53. Song, X.L., Liu, Y.B.: Cryptanalysis and improvement of verifiable quantum (\(k, n\)) secret sharing. Quantum Inf. Process. 15, 851–868 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. Lin, S., Guo, G.D., Xu, Y.Z., Sun, Y., Liu, X.F.: Cryptanalysis of quantum secret sharing with \(d\)-level single particles. Phys. Rev. A 93, 062343 (2016)

    Article  ADS  Google Scholar 

  55. Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  56. Du, Y.T., Bao, W.S.: Dynamic quantum secret sharing protocol based on two-particle transform of Bell states. Chin. Phys. B 27, 080304 (2018)

    Article  ADS  Google Scholar 

  57. Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single \(d\)-level quantum system. Quantum Inf. Process. 17, 225 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author Gao thanks his parents for their encouragements. This work is supported by the 2014-year Program for Excellent Youth Talents in University of Anhui Province, the Talent Scientific Research Fundation of Tongling University under grant No. 2015tlxyrc01 and the top-notch talents cultivation project of Anhui Higher Education under grant No.gxyq2017081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Wei, CC. & Wang, D. Cryptanalysis and improvement of dynamic quantum secret sharing protocol based on two-particle transform of Bell states. Quantum Inf Process 18, 186 (2019). https://doi.org/10.1007/s11128-019-2301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2301-y

Keywords

Navigation