Skip to main content
Log in

Secret sharing of a known arbitrary quantum state with noisy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study quantum state sharing (QSTS) with noisy environment in this paper. As an example, we present a QSTS scheme of a known state whose information is hold by the dealer and then investigate the noisy influence process of the scheme. Taking the amplitude-damping noise and the phase-damping noise as typical noisy channels, we show that the secret state can be shared among agents with some information lost. Our research connects the areas of quantum state sharing and remote state preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  3. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 14302–14304 (2000)

    Article  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  5. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)

    Article  ADS  Google Scholar 

  6. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72(5), 052315 (2005)

    Article  ADS  Google Scholar 

  7. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65(2), 022316 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  8. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  9. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41(9), 095501 (2008)

    Article  ADS  Google Scholar 

  10. Wang, M.M., Chen, X.B., Yang, Y.X.: Deterministic joint remote preparation of an arbitrary two-qubit state using the cluster state. Commun. Theor. Phys. 59(5), 568–572 (2013)

    Article  ADS  Google Scholar 

  11. Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Remote preparation of an arbitrary two-qubit state with three-party. Int. J. Theor. Phys. 49(6), 1262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, Z.Y.: Controlled remote preparation of a two-qubit state via an asymmetric quantum channel. Commun. Theor. Phys. 55(2), 244 (2011)

    Article  ADS  MATH  Google Scholar 

  13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86(25), 5807 (2001)

    Article  ADS  Google Scholar 

  15. Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283(23), 4782–4786 (2010)

    Article  ADS  Google Scholar 

  16. Xia, Z., Wang, X., Sun, X., Wang, B.: Steganalysis of least significant bit matching using multi-order differences. Secur. Commun. Netw. 7(8), 1283–1291 (2014)

    Article  Google Scholar 

  17. Xia, Z., Wang, X., Sun, X., Liu, Q., Xiong, N.: Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed. Tools Appl. pp. 1-16 (2014). doi:10.1007/s11042-014-2381-8

  18. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64(6), 062309 (2001)

    Article  ADS  Google Scholar 

  19. Guo, P., Wang, J., Li, B., Lee, S.: A variable threshold-value authentication architecture for wireless mesh networks. J. Internet Technol. 15(6), 929–936 (2014)

    Google Scholar 

  20. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  21. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  22. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  23. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  24. Bandyopadhyay, S.: Teleportation and secret sharing with pure entangled states. Phys. Rev. A 62(1), 012308 (2000)

    Article  ADS  Google Scholar 

  25. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65(4), 042320 (2002)

    Article  ADS  Google Scholar 

  26. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  27. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)

    Article  ADS  Google Scholar 

  28. Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78(6), 062307 (2008)

    Article  ADS  Google Scholar 

  29. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)

    Article  ADS  Google Scholar 

  30. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)

    Article  ADS  Google Scholar 

  31. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  32. Li, X.H., Zhou, P.: Efficient symmetric multiparty quantum state sharing of an arbitrary m -qubit state. J. Phys. B: At. Mol. Opt. Phys. 39(8), 1975 (2006)

    Article  ADS  Google Scholar 

  33. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  34. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10(2), 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, M.M., Chen, X.B., Chen, J.G., Yang, Y.X.: Quantum state sharing of arbitrary known multi-qubit and multi-qudit states. Int. J. Quantum Inf. 12(03), 1450014 (2014)

    Article  MathSciNet  Google Scholar 

  36. Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing through noisy quantum channel. Quantum Inf. Comput. 12(3–4), 253–261 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)

    Article  ADS  Google Scholar 

  38. Ai-Xi, C., Li, D., Jia-Hua, L., Zhi-Ming, Z.: Remote preparation of an entangled state in nonideal conditions. Commun. Theor. Phys. 46(2), 221 (2006)

    Article  ADS  Google Scholar 

  39. Guan, X.W., Chen, X.B., Wang, L.C., Yang, Y.X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53(7), 2236–2245 (2014)

    Article  MATH  Google Scholar 

  40. Jiang, M., Zhou, L.L., Chen, X.P., You, S.H.: Deterministic joint remote preparation of general multi-qubit states. Opt. Commun. 301–302, 39–45 (2013)

    Article  Google Scholar 

  41. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377(38), 2524–2530 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  42. Xian-Ting, L.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537 (2003)

    Article  MathSciNet  Google Scholar 

  43. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler–dušek protocol. Quantum Inf. Comput. 7(4), 329 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101(20), 208901 (2008)

    Article  ADS  Google Scholar 

  45. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 2(357), 101–103 (2006)

    Article  ADS  Google Scholar 

  46. Wang, M.M., Chen, X.B., Yang, Y.X.: Comment on “High-dimensional deterministic multiparty quantum secret sharing without unitary operations”. Quantum Inf. Process. 12(2), 785–792 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery–Buzcaronek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324 (2007)

    Article  ADS  Google Scholar 

  48. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un)biased bases. Phys. Rev. A 78, 12344–12348 (2008)

    Article  ADS  Google Scholar 

  49. Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79(4), 42306–42318 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  50. Man, Z.X., Xia, Y.J., An, N.B.: Economical and feasible controlled teleportation of an arbitrary unknown N-qubit entangled state. J. Phys. B: At. Mol. Opt. Phys. 40(10), 1767–1774 (2007)

    Article  ADS  Google Scholar 

  51. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1–2), 55–58 (2006)

    Article  ADS  MATH  Google Scholar 

  52. Hou, K., Wang, J., Lu, Y.L., Shi, S.H.: Joint Remote Preparation of a Multipartite GHZ-class State. Int. J. Theor. Phys. 48(7), 2005–2015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhan, Y.B.: Joint remote preparation of a four-dimensional quantum state (2010). arXiv:1006.4204v1

  54. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)

    Article  ADS  Google Scholar 

  55. Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11(6), 1653–1667 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The project is supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2014JQ2-6030), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 15JK1316), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), the National Natural Science Foundation of China (61201118), and the PhD Start-up Foundation of Xi’an Polytechnic University (No. BS1331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MM., Wang, W., Chen, JG. et al. Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf Process 14, 4211–4224 (2015). https://doi.org/10.1007/s11128-015-1103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1103-0

Keywords

Navigation