Skip to main content
Log in

Implementing quantum stochastic differential equations on a quantum computer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study how to solve quantum stochastic differential equations (QSDEs) using a quantum computer. This is illustrated by an implementation of the QSDE that models the interaction of a laser driven two-level atom with the electromagnetic field in the vacuum state, on the IBMqx4 Tenerife quantum computer (IBM in The IBM Q experience. https://quantumexperience.ng.bluemix.net/qx. Accessed 23 Nov 2018, 2018). We compare the resulting master equation and quantum filtering equations to existing theory. In this way we characterize the performance of the computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., et al.: Qiskit: An Open-source Framework for Quantum Computing. (2019). https://doi.org/10.5281/zenodo.2562110

  2. Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7, 59–104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Belavkin, V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42, 171–201 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bouten, L., van Handel, R., James, M.: An introduction to quantum filtering. SIAM J. Control Optim. 46, 2199–2241 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bouten, L.M., van Handel, R.: Discrete approximation of quantum stochastic models. J. Math. Phys. 49, 102109 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bouten, L.M., van Handel, R., James, M.: A discrete invitation to quantum filtering and feedback control. SIAM Rev. 51, 239–316 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Brun, T.A.: A simple model of quantum trajectories. Am. J. Phys. 70, 719–737 (2002)

    Article  ADS  Google Scholar 

  8. Carmichael, H.J.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)

    MATH  Google Scholar 

  9. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta J.M.: Open quantum assembly language. ArXiv e-prints arXiv:1707.03429, July (2017)

  10. Davies, E.B.: Quantum stochastic processes. Commun. Math. Phys. 15, 277–304 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gough, J., James, M.: Quantum feedback networks: Hamiltonian formulation. Commun. Math. Phys. 287, 1109–1132 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gough, J., James, M.: The series product and its application to quantum feedforward and feedback networks. IEEE Trans. Autom. Control 54, 2530–2544 (2009)

    Article  MathSciNet  Google Scholar 

  13. Gough, J., Sobolev, A.: Stochastic Schrödinger equations as limit of discrete filtering. Open Syst. Inf. Dyn. 11, 235–255 (2004)

    Article  MathSciNet  Google Scholar 

  14. Gross, J.A., Caves, C.M., Milburn, G.J., Combes, J.: Qubit models of weak continuous measurements: Markovian conditional and open-system dynamics. Quantum Sci. Technol. 3(2), 024005 (2018)

    Article  ADS  Google Scholar 

  15. Hudson, R.L., Parthasarathy, K.R.: Quantum Itô’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)

    Article  ADS  Google Scholar 

  16. IBM.: The IBM Q experience. https://quantumexperience.ng.bluemix.net/qx. Accessed 23 Nov 2018 (2018)

  17. Kümmerer, B.: Markov dilations on \(W^*\)-algebras. J. Funct. Anal. 63, 139–177 (1985)

    Article  MathSciNet  Google Scholar 

  18. Lindsay, J.M., Parthasarathy, K.R.: The passage from random walk to diffusion in quantum probability II. Sankhya Indian J. Stat. 50, 151–170 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Maassen, H.: Quantum Markov processes on Fock space described by integral kernels. In: Accardi, L., von Waldenfels, W. (eds.) QP and Applications II, vol. 1136, pp. 361–374. Springer, Berlin (1985). Lecture Notes in Mathematics

    Google Scholar 

  20. Meyer, P.-A.: Quantum Probability for Probabilists. Springer, Berlin (1993)

    Book  Google Scholar 

  21. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Parthasarathy, K.R.: The passage from random walk to diffusion in quantum probability. J. Appl. Probab. 25A, 151–166 (1988)

    Article  MathSciNet  Google Scholar 

  23. von Waldenfels, W.: A Measure Theoretical Approach to Quantum Stochastic Processes, vol. 878. Springer, Berlin (2014). Lecture notes in Physics

    Book  Google Scholar 

  24. Yip, K.W., Albash, T., Lidar, D.: Quantum trajectories for time-dependent adiabatic master equations. Phys. Rev. A 97, 022116 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gé Vissers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vissers, G., Bouten, L. Implementing quantum stochastic differential equations on a quantum computer. Quantum Inf Process 18, 152 (2019). https://doi.org/10.1007/s11128-019-2272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2272-z

Keywords

Navigation