Skip to main content
Log in

Quantum Feedback Networks: Hamiltonian Formulation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A quantum network is an open system consisting of several component Markovian input-output subsystems interconnected by boson field channels carrying quantum stochastic signals. Generalizing the work of Chebotarev and Gregoratti, we formulate the model description by prescribing a candidate Hamiltonian for the network including details of the component systems, the field channels, their interconnections, interactions and any time delays arising from the geometry of the network. (We show that the candidate is a symmetric operator and proceed modulo the proof of self- adjointness.) The model is non-Markovian for finite time delays, but in the limit where these delays vanish we recover a Markov model and thereby deduce the rules for introducing feedback into arbitrary quantum networks. The type of feedback considered includes that mediated by the use of beam splitters. We are therefore able to give a system-theoretic approach to introducing connections between quantum mechanical state-based input-output systems, and give a unifying treatment using non-commutative fractional linear, or Möbius, transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L., Hudson, R.L.: Quantum stochastic flows and non-abelian cohomology. Quantum Probability V, Lecture Notes in Mathematics 1442, Berlin-Heidelberg-New York:Springer, 1990, pp. 54–69

  2. Belavkin, V.P.: Optimization of Quantum Observation and Control. In: Proc. of 9th IFIP Conf on Optimizat Techn. Notes in Control and Inform Sci. 1, Warszawa: Springer-Verlag, 1979

  3. Belavkin V.P.: Theory of the Control of Observable Quantum Systems. Automatica and Remote Control 44(2), 178–188 (1983)

    MATH  MathSciNet  Google Scholar 

  4. Belavkin V.P.: Quantum continual measurements and a posteriori collapse on CCR. Commun. Math. Phys. 146, 611–635 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Belavkin V.P.: On Quantum Ito Algebras and Their Decompositions. Lett. Math. Phys. 45, 131–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bouten L., Van Handel R., James M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46, 2199–2241 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carmichael H.J.: Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett. 70(15), 2273–2276 (1993)

    Article  ADS  Google Scholar 

  8. Caves C.M.: Quantum limits on noise in linear amplifiers. Phys. Rev. D. 26, 1817 (1982)

    Article  ADS  Google Scholar 

  9. Chebotarev A.M.: Quantum stochastic differential equation is unitarily equivalent to a symmetric boundary problem in Fock space. Inf. Dim. Anal. Quantum Prob. 1, 175–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Davies E.B.: One-parameter Semigroups. Academic Press Inc, London (1980)

    MATH  Google Scholar 

  11. Gardiner C.W.: Driving a quantum system with the output field from another driven quantum system. Phys. Rev. Lett. 70(15), 2269–2272 (1993)

    Article  ADS  Google Scholar 

  12. Gardiner C.W., Collett M.J.: Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 31(6), 3761–3774 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gough J.: Quantum flows as Markovian limit of emission, absorption and scattering interactions. Commun. Math. Phys. 254(2), 489–512 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Gough, J., Belavkin, V.P., Smolyanov, O.G.: Hamilton-Jacobi-Bellman equations for Quantum Filtering and Control. J. Opt. B: Quantum Semiclass. Opt. S237–244, Special issue on quantum control (2005)

  15. Gough, J., James, M.R.: The series product and its application to feedforward and feedback networks. IEEE Trans. Automatic Control. http://arXiv.org/abs/07070048(v1) [quant-ph], 2007

  16. Green M., Limebeer D.J.N.: Linear Robust Control. Prentice Hall, Englewood Cliffs, NJ (1995)

    MATH  Google Scholar 

  17. Gregoratti M.: The Hamiltonian operator associated to some quantum stochastic differential equations. Commun. Math. Phys. 222, 181–200 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Hudson R.L., Parthasarathy K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Lloyd S.: Coherent quantum feedback. Phys. Rev. A 62, 022108 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Warszawski P., Wiseman H.M., Mabuchi H.: Quantum trajectories for realistic detection. Phys. Rev. A 65, 023802 (2002)

    Article  ADS  Google Scholar 

  21. Wiseman H.: Quantum theory of continuous feedback. Phys. Rev. A 49(3), 2133–2150 (1994)

    Article  ADS  Google Scholar 

  22. Yanagisawa M., Kimura H.: Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems. IEEE Trans. Automatic Control 48, 2107–2120 (2003)

    Article  MathSciNet  Google Scholar 

  23. Yanagisawa M., Kimura H.: Transfer function approach to quantum control-part II: Control concepts and applications. IEEE Trans. Automatic Control 48, 2121–2132 (2003)

    Article  MathSciNet  Google Scholar 

  24. Young, N.: An Introduction to Hilbert Space. Cambridge Mathematical Textbooks, Cambridge: Cambridge Univ. Press, 1988

  25. Yurke B., Denker J.S.: Quantum network theory. Phys. Rev. A 29(3), 1419–1437 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zhou K., Doyle J., Glover K.: Robust and Optimal Control. Prentice Hall, Englewood Cliffs, NJ (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gough.

Additional information

Communicated by A. Kupiainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gough, J., James, M.R. Quantum Feedback Networks: Hamiltonian Formulation. Commun. Math. Phys. 287, 1109–1132 (2009). https://doi.org/10.1007/s00220-008-0698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0698-8

Keywords

Navigation