Skip to main content
Log in

Robust and efficient transport of two-qubit entanglement via disordered spin chains

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate how robust is the modified XX spin-1/2 chain of Vieira and Rigolin (Phys Lett A 382:2586, 2018) in transmitting entanglement when several types of disorder and noise are present. First, we consider how deviations about the optimal settings that lead to almost perfect transmission of a maximally entangled two-qubit state affect the entanglement reaching the other side of the chain. Those deviations are modeled by static, dynamic, and fluctuating disorder. We then study how spurious or undesired interactions and external magnetic fields diminish the entanglement transmitted through the chain. For chains of the order of hundreds of qubits, we show for all types of disorder and noise here studied that the system is not appreciably affected when we have weak disorder (deviations of less than 1% about the optimal settings) and that for moderate disorder it still beats the standard and ordered XX model when deployed to accomplish the same task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247 (2000)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  4. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  5. Nikolopoulos, G.M., Petrosyan, D., Lambropoulos, P.L.: Electron wavepacket propagation in a chain of coupled quantum dots. J. Phys. Condens. Matter 16, 4991 (2004)

    Article  ADS  Google Scholar 

  6. Subrahmanyam, V.: Entanglement dynamics and quantum-state transport in spin chains. Phys. Rev. A 69, 034304 (2004)

    Article  ADS  Google Scholar 

  7. Osborne, T.J., Linden, N.: Propagation of quantum information through a spin system. Phys. Rev. A 69, 052315 (2004)

    Article  ADS  Google Scholar 

  8. Christandl, M., Datta, N., Dorlas, T.C., Ekert, A., Kay, A., Landahl, A.J.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  9. Wójcik, A., Łuczak, T., Kurzyński, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hartmann, M.J., Reuter, M.E., Plenio, M.B.: Excitation and entanglement transfer versus spectral gap. New J. Phys. 8, 94 (2006)

    Article  ADS  Google Scholar 

  12. Huo, M.X., Li, Y., Song, Z., Sun, C.P.: The Peierls distorted chain as a quantum data bus for quantum state transfer. Europhys. Lett. 84, 30004 (2008)

    Article  ADS  Google Scholar 

  13. Gualdi, G., Kostak, V., Marzoli, I., Tombesi, P.: Perfect state transfer in long-range interacting spin chains. Phys. Rev. A 78, 022325 (2008)

    Article  ADS  Google Scholar 

  14. Banchi, L., Apollaro, T.J.G., Cuccoli, A., Vaia, R., Verrucchi, P.: Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems. Phys. Rev. A 82, 052321 (2010)

    Article  ADS  Google Scholar 

  15. Kurzyński, P., Wójcik, A.: Discrete-time quantum walk approach to state transfer. Phys. Rev. A 83, 062315 (2011)

    Article  ADS  Google Scholar 

  16. Godsil, C., Kirkland, S., Severini, S., Smith, J.: Number-theoretic nature of communication in quantum spin systems. Phys. Rev. Lett. 109, 050502 (2012)

    Article  ADS  Google Scholar 

  17. Apollaro, T.J.G., Banchi, L., Cuccoli, A., Vaia, R., Verrucchi, P.: 99%-fidelity ballistic quantum-state transfer through long uniform channels. Phys. Rev. A 85, 052319 (2012)

    Article  ADS  Google Scholar 

  18. Lorenzo, S., Apollaro, T.J.G., Sindona, A., Plastina, F.: Quantum-state transfer via resonant tunneling through local-field-induced barriers. Phys. Rev. A 87, 042313 (2013)

    Article  ADS  Google Scholar 

  19. Korzekwa, K., Machnikowski, P., Horodecki, P.: Quantum-state transfer in spin chains via isolated resonance of terminal spins. Phys. Rev. A 89, 062301 (2014)

    Article  ADS  Google Scholar 

  20. Shi, Z.C., Zhao, X.L., Yi, X.X.: Robust state transfer with high fidelity in spin-1/2 chains by Lyapunov control. Phys. Rev. A 91, 032301 (2015)

    Article  ADS  Google Scholar 

  21. Pouyandeh, S., Shahbazi, F.: Quantum state transfer in XXZ spin chains: a measurement induced transport method. Int. J. Quantum Inf. 13, 1550030 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhang, X.-P., Shao, B., Hu, S., Zou, J., Wu, L.-A.: Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains. Ann. Phys. (NY) 375, 435 (2016)

    Article  ADS  Google Scholar 

  23. Chen, X., Mereau, R., Feder, D.L.: Asymptotically perfect efficient quantum state transfer across uniform chains with two impurities. Phys. Rev. A 93, 012343 (2016)

    Article  ADS  Google Scholar 

  24. Estarellas, M.P., D’Amico, I., Spiller, T.P.: Topologically protected localised states in spin chains. Sci. Rep. 7, 42904 (2017)

    Article  ADS  Google Scholar 

  25. Li, Y., Shi, T., Chen, B., Song, Z., Sun, C.-P.: Quantum-state transmission via a spin ladder as a robust data bus. Phys. Rev. A 71, 022301 (2005)

    Article  ADS  Google Scholar 

  26. Estarellas, M.P., D’Amico, I., Spiller, T.P.: Robust quantum entanglement generation and generation-plus-storage protocols with spin chains. Phys. Rev. A 95, 042335 (2017)

    Article  ADS  Google Scholar 

  27. Apollaro, T.J.G., Almeida, G.M.A., Lorenzo, S., Ferraro, A., Paganelli, S.: Spin chains for two-qubit teleportation. arXiv:1812.11609 [quant-ph] (2018)

  28. Shi, T., Li, Y., Song, Z., Sun, Ch-P: Quantum-state transfer via the ferromagnetic chain in a spatially modulated field. Phys. Rev. A 71, 032309 (2005)

    Article  ADS  Google Scholar 

  29. Sousa, R., Omar, Y.: Pretty good state transfer of entangled states through quantum spin chains. New J. Phys. 16, 123003 (2014)

    Article  ADS  Google Scholar 

  30. Lorenzo, S., Apollaro, T.J.G., Paganelli, S., Palma, G.M., Plastina, F.: Transfer of arbitrary two-qubit states via a spin chain. Phys. Rev. A 91, 042321 (2015)

    Article  ADS  Google Scholar 

  31. Vieira, R., Rigolin, G.: Almost perfect transport of an entangled two-qubit state through a spin chain. Phys. Lett. A 382, 2586 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. Cirac, J.I., Zoller, P., Kimble, H., Mabuchi, H.: Quantum State transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  33. Plenio, M.B., Hartley, J., Eisert, J.: Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 6, 36 (2004)

    Article  ADS  Google Scholar 

  34. Plenio, M.B., Semião, F.L.: High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains. New J. Phys. 7, 73 (2005)

    Article  ADS  Google Scholar 

  35. Nicacio, F., Semião, F.L.: Transport of correlations in a harmonic chain. Phys. Rev. A 94, 012327 (2016)

    Article  ADS  Google Scholar 

  36. De Chiara, G., Rossini, D., Montangero, S., Fazio, R.: From perfect to fractal transmission in spin chains. Phys. Rev. A 72, 012323 (2005)

    Article  ADS  Google Scholar 

  37. Fitzsimons, J., Twamley, J.: Superballistic diffusion of entanglement in disordered spin chains. Phys. Rev. A 72, 050301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. Burgarth, D., Bose, S.: Perfect quantum state transfer with randomly coupled quantum chains. New J. Phys. 7, 135 (2005)

    Article  ADS  Google Scholar 

  39. Petrosyan, D., Nikolopoulos, G.M., Lambropoulos, P.: State transfer in static and dynamic spin chains with disorder. Phys. Rev. A 81, 042307 (2010)

    Article  ADS  Google Scholar 

  40. Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Robustness of spin-coupling distributions for perfect quantum state transfer. Phys. Rev. A 84, 022311 (2011)

    Article  ADS  Google Scholar 

  41. Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Spin chains for robust state transfer: modified boundary couplings versus completely engineered chains. Phys. Rev. A 85, 012318 (2012)

    Article  ADS  Google Scholar 

  42. Bruderer, M., Franke, K., Ragg, S., Belzig, W., Obreschkow, D.: Exploiting boundary states of imperfect spin chains for high-fidelity state transfer. Phys. Rev. A 85, 022312 (2012)

    Article  ADS  Google Scholar 

  43. Nikolopoulos, G.M.: Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 87, 042311 (2013)

    Article  ADS  Google Scholar 

  44. Zwick, A., Álvarez, G.A., Bensky, G., Kurizki, G.: Optimized dynamical control of state transfer through noisy spin chains. New. J. Phys. 16, 065021 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  45. Ashhab, S.: Quantum state transfer in a disordered one-dimensional lattice. Phys. Rev. A 92, 062305 (2015)

    Article  ADS  Google Scholar 

  46. Pavlis, A.K., Nikolopoulos, G.M., Lambropoulos, P.: Evaluation of the performance of two state-transfer Hamiltonians in the presence of static disorder. Quantum Inf. Process. 15, 2553 (2016)

    Article  ADS  Google Scholar 

  47. Ronke, R., Estarellas, M.P., D’Amico, I., Spiller, T.P., Miyadera, T.: Anderson localisation in spin chains for perfect state transfer. Eur. Phys. J. D 70, 189 (2016)

    Article  ADS  Google Scholar 

  48. Almeida, G.M.A., de Moura, F.A.B.F., Apollaro, T.J.G., Lyra, M.L.: Disorder-assisted distribution of entanglement in XY spin chains. Phys. Rev. A 96, 032315 (2017)

    Article  ADS  Google Scholar 

  49. Almeida, G.M.A., de Moura, F.A.B.F., Lyra, M.L.: Quantum-state transfer through long-range correlated disordered channels. Phys. Lett. A 382, 1335 (2018)

    Article  ADS  Google Scholar 

  50. Almeida, G.M.A., de Moura, F.A.B.F., Lyra, M.L.: Entanglement generation between distant parties via disordered spin chains. arXiv:1711.08553 [quant-ph] (2017)

  51. Kay, A., Ericsson, M.: Geometric effects and computation in spin networks. New J. Phys. 7, 143 (2005)

    Article  ADS  Google Scholar 

  52. Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)

    Article  ADS  Google Scholar 

  53. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  54. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  55. Vieira, R., Amorim, E.P.M., Rigolin, G.: Dynamically disordered quantum walk as a maximal entanglement generator. Phys. Rev. Lett. 111, 180503 (2013)

    Article  ADS  Google Scholar 

  56. Vieira, R., Amorim, E.P.M., Rigolin, G.: Entangling power of disordered quantum walks. Phys. Rev. A 89, 042307 (2014)

    Article  ADS  Google Scholar 

  57. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  58. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RV thanks CNPq (Brazilian National Council for Scientific and Technological Development) for funding and GR thanks CNPq and CNPq/FAPERJ (State of Rio de Janeiro Research Foundation) for financial support through the National Institute of Science and Technology for Quantum Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Rigolin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A The 1000 + 2 qubits case

A The 1000 + 2 qubits case

Whenever we have dynamic or fluctuating disorders, specially for small values of \(\tau \), the computational resources needed to handle systems of the order of thousands of qubits are very demanding. For that reason, we report here only two calculations for the \(N = 1000 + 2\) qubits system by implementing one tenth of the realizations made for the \(N = 100 + 2\) qubits case, namely instead of 1000 realizations for each disorder percentage, we work with 100 realizations. We have also worked with the worst possible scenario, in which the system is most severely affected, i.e., fluctuating disorder affecting the coupling constants as well as fluctuating random external fields and spurious \(\sigma ^z_i\sigma ^z_j\) interactions. Note that for less stringent disorder and noise scenarios, the \(N = 1000 + 2\) qubits case gives much better results.

Fig. 7
figure 7

For \(N = 100 + 2\) qubits, we have \(J_m/J=49.98\), the optimal setting for the clean system when \(J_m/J\le 50\), giving a transmitted entanglement of EoF \(= 0.98\) at the time \(Jt/\hbar = 20.53\) (square-black curve). For \(N = 1000 + 2\) qubits, we have \(J_m/J=298.27\), the optimal setting for the clean system when \(J_m/J\le 300\), with transmitted entanglement given by EoF \(= 0.99\) at the time \(Jt/\hbar = 118.55\) (circle-red curve). Solid curves are related to the proposed model when affected by fluctuating disorder and noise about those optimal settings, while the dotted curves refer to the optimal entanglement transmitted if we employ the clean standard model (strictly linear chain). The period \(\tau \) of changes in the Hamiltonian is shown in the figure (Color figure online)

As expected, the results depicted in Figs. 6 and 7 show that the longer the chain the more the system is affected by disorder and noise. However, we still have very good entanglement transmission for disorder of less than \(0.1\%\) about the optimal settings of the clean system and an acceptable one for less than \(0.5\%\). Moreover, for disorder of less than \(1\%\), we still beat the optimal transmission of the clean standard model (strictly linear chain).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R., Rigolin, G. Robust and efficient transport of two-qubit entanglement via disordered spin chains. Quantum Inf Process 18, 135 (2019). https://doi.org/10.1007/s11128-019-2254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2254-1

Keywords

Navigation