Skip to main content
Log in

Renormalization of global entanglement and Bell nonlocality in the Ising model with a transverse field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By combining quantum renormalization group approach and critical theory, we investigate the performance of global entanglement and Bell nonlocality in quantum phase transition (QPT) that occurred in Ising model with a transverse field (ITF). After several iterations, both of them gradually develop two different saturated values relevant to the Ising phase and paramagnetic phase. Moreover, we proved that the inherent block–block correlation is strong enough to violate the quantum nonlocality. What is more, we derive an exact relation between global entanglement and Bell nonlocality for the given case. To serve further insight, the nonanalytic and scaling behaviors are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bell, J.: On the einstein podolsky rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  5. Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  7. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Verstraete, F., Popp, M., Cirac, J.I.: Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004)

    Article  ADS  Google Scholar 

  9. Li, Y.C., Lin, H.Q.: Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. Phys. Rev. A 83, 052323 (2011)

    Article  ADS  Google Scholar 

  10. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  11. Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Spotlighting quantum critical points via quantum correlations at finite temperatures. Phys. Rev. A 83, 062334 (2011)

    Article  ADS  Google Scholar 

  12. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hu, T.T., Xue, K., Sun, C.F., Wang, G.C., Ren, H.: Quantum teleportation and dense coding via topological basis. Quantum Inf. Process. 12, 3369–3381 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Harrow, A., Hayden, P., Leung, D.: Superdense coding of quantum states. Phys. Rev. Lett. 92, 187901 (2004)

    Article  ADS  Google Scholar 

  16. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  18. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  19. Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  21. Qin, M., Ren, Z.Z., Zhang, X.: Universal quantum correlation close to quantum critical phenomena. Sci. Rep. 6, 26042 (2016)

    Article  ADS  Google Scholar 

  22. Langari, A., Pollmann, F., Siahatgar, M.: Ground-state fidelity of the spin-1 Heisenberg chain with single ion anisotropy: quantum renormalization group and exact diagonalization approaches. J. Phys. Condens. Matter 25, 406002 (2013)

    Article  Google Scholar 

  23. Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304(R) (2007)

    Article  ADS  Google Scholar 

  24. Liu, C.C., Shi, J.D., Ding, Z.Y., Ye, L.: Exploring the renormalization of quantum discord and Bell non-locality in the one-dimensional transverse Ising model. Quantum Inf. Process. 15, 3209–3221 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Vidal, J., Palacios, G., Mosseri, R.: Entanglement in a second-order quantum phase transition. Phys. Rev. A 69, 022107 (2004)

    Article  ADS  Google Scholar 

  26. Lambert, N., Emary, C., Brandes, T.: Entanglement and the phase transition in single-mode superradiance. Phys. Rev. Lett. 92, 073602 (2004)

    Article  ADS  Google Scholar 

  27. Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)

    Article  ADS  Google Scholar 

  28. Song, X.K., Wu, T., Ye, L.: Negativity and quantum phase transition in the anisotropic XXZ model. Eur. Phys. J. D 67, 96 (2013)

    Article  ADS  Google Scholar 

  29. Song, X.K., Wu, T., Xu, S., He, J., Ye, L.: Renormalization of quantum discord and Bell nonlocality in the XXZ model with Dzyaloshinskii–Moriya interaction. Ann. Phys. 349, 220 (2014)

    Article  ADS  Google Scholar 

  30. Zanardi, P., Paunkovic, N.: Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. Cheng, W.W., Liu, J.M.: Fidelity susceptibility approach to quantum phase transitions in the XY spin chain with multisite interactions. Phys. Rev. A 82, 012308 (2010)

    Article  ADS  Google Scholar 

  32. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)

    Article  ADS  Google Scholar 

  33. Pan, J.W., Bouwmeester, D., Matthew, D., Harald, W., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515 (2000)

    Article  ADS  Google Scholar 

  34. Mandel, O., Greiner, M., Widera, A., et al.: Controlled collisions for multiparticle entanglement of optically trapped atoms. Nature 425, 937 (2003)

    Article  ADS  Google Scholar 

  35. Sackett, C.A., Kielpinski, D., King, B.E., et al.: Experimental entanglement of four particles. Nature 404, 256 (2000)

    Article  ADS  Google Scholar 

  36. Roos, C.F., Riebe, M., Haffner, H., et al.: Control and measurement of three-qubit entangled states. Science 304, 1478 (2004)

    Article  ADS  Google Scholar 

  37. Rauschenbeutel, A., Nogues, G., Osnaghi, S., et al.: Step-by-step engineered multiparticle entanglement. Science 288, 2024 (2000)

    Article  ADS  Google Scholar 

  38. Qin, M., Ren, Z.Z., Zhang, X.: Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model. Quantum Inf. Process. 15, 255–267 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Shi, J.D., Wang, D., Ye, L.: Genuine multipartite entanglement as the indicator of quantum phase transition in spin systems. Quantum Inf. Process. 15, 4629–4640 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Batle, J., Casas, M.: Nonlocality and entanglement in the XY model. Phys. Rev. A 82, 062101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  41. Justino, L., de Oliveira, T.R.: Bell inequalities and entanglement at quantum phase transitions in the XXZ model. Phys. Rev. A 85, 052128 (2012)

    Article  ADS  Google Scholar 

  42. Bartkiewicz, K., Horst, B., Lemr, K., Miranowicz, A.: Entanglement estimation from Bell inequality violation. Phys. Rev. A 88, 052105 (2013)

    Article  ADS  Google Scholar 

  43. Verstraete, F., Wolf, M.M.: Entanglement versus bell violations and their behavior under local filtering operations. Phys. Rev. Lett. 89, 170401 (2002)

    Article  ADS  Google Scholar 

  44. Horst, B., Bartkiewicz, K., Miranowicz, A.: Two-qubit mixed states more entangled than pure states: comparison of the relative entropy of entanglement for a given nonlocality. Phys. Rev. A 87, 042108 (2013)

    Article  ADS  Google Scholar 

  45. Miranowicz, A., Horst, B., Koper, A.: Paradoxes of measures of quantum entanglement and Bell’s inequality violation in two-qubit systems. J. Comput. Methods Sci. Eng. 10, 501 (2010)

    MATH  Google Scholar 

  46. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  47. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Brennen, G.K.: An observable measure of entanglement for pure states of multi-qubit systems. Quantum Inf. Comput. 3, 619 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Yao, Y., Li, H.W., Li, M., Yin, Z.Q., Chen, W., Han, Z.F.: Bell violation versus geometric measure of quantum discord and their dynamical behavior. Eur. Phys. J. D 66, 295 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China under Grant No. 11605028, the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2016A547, the Open Foundation for CAS Key Laboratory of Quantum Information under Grant No. KQI201702, the Key Program of Excellent Youth Talent Project of the Education Department of Anhui Province of China (Grant No. gxyqZD2016190), the Key Research Foundation of Education Department of Anhui Province of China (Grant No. KJ2013A205), the Teaching Research Program of Fuyang Normal University (Grant Nos. 2014JYXM18 and 2015JYXM34), the Research Center for Quantum Information Technology of Fuyang Normal University under Grant No. kytd201706 and the Doctoral Foundation of Fuyang Normal University under Grant No. FYNU1602.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiadong Shi or Tao Wu.

Appendix

Appendix

In this appendix, we will first detail how the ITF model is renormalized by exploiting the QRG method. The Hamiltonian of the ITF model in the z direction on a periodic chain of N site is

$$\begin{aligned} H=-J\sum _{i=1}^N {\left[ {\sigma _i^x \sigma _{i+1}^x +g\sigma _i^z } \right] }, \end{aligned}$$
(A1)

By implementing the Kadanoff’s block method, Hamiltonian (A1) can be rewritten as

$$\begin{aligned} H=H^\mathrm{B}+H^\mathrm{BB}, \end{aligned}$$
(A2)

where \(H^\mathrm{B}\) is the block Hamiltonian and \(H^\mathrm{BB}\) is the interblock Hamiltonian. Here, we choose two sites as a block and the decomposition is shown in Fig. 5.

Fig. 5
figure 5

(Color online) The decomposition of ITF model by implementing the Kadanoff’s block approach. The Hamiltonian of the system is divided into two parts, i.e., block Hamiltonian \(H^\mathrm{B}\) and interblock Hamiltonian \(H^\mathrm{BB}\)

Simultaneously, the specific forms of Hamiltonian \(H^\mathrm{B}\) and \(H^\mathrm{BB}\) are

$$\begin{aligned} H^\mathrm{B}= & {} \sum _L^{N/2} {h_L^A }, \end{aligned}$$
(A3)
$$\begin{aligned} H^\mathrm{BB}= & {} -J\sum _L^{N/2} {\left[ {\sigma _{L,2}^x \sigma _{L+1,1}^x +g\sigma _L^z } \right] }, \end{aligned}$$
(A4)

with \(h_L^A =-J\left[ {\sigma _{L,1}^x \sigma _{L,2}^x +g\sigma L^z } \right] \) is the Lth block Hamiltonian. A remark is in order; choosing two-site block is essential here to get a self-similarity Hamiltonian after each iterative step.

In terms of the matrix product states, the Lth block Hamiltonian can be exactly diagonalized and solved. Then, we can obtain two degenerate ground states which are used to construct the projection operators. With \(\left| \uparrow \right\rangle \) and \(\left| \downarrow \right\rangle \) defined as the eigenstates of operator \(\sigma ^{z}\), both degenerate ground states are

$$\begin{aligned} \left| {\phi _0 } \right\rangle= & {} \frac{1}{\sqrt{1+\left( {g+\sqrt{1+g^{2}}} \right) ^{2}}}\left[ {\left( {g+\sqrt{1+g^{2}}} \right) \left| {\downarrow \downarrow } \right\rangle +\left| {\uparrow \uparrow } \right\rangle } \right] , \end{aligned}$$
(A5)
$$\begin{aligned} \left| {\phi _0 ^{\prime }} \right\rangle= & {} \frac{1}{\sqrt{1+\left( {g+\sqrt{1+g^{2}}} \right) ^{2}}}\left[ {\left( {g+\sqrt{1+g^{2}}} \right) \left| {\downarrow \uparrow } \right\rangle +\left| {\uparrow \downarrow } \right\rangle } \right] . \end{aligned}$$
(A6)

To eliminate the higher energy of the system and retain the lower, the projection operator \(P_0 \) is composed of its lowest energy eigenstates. Then, the effective Hamiltonian \(H^\mathrm{eff}\) and original Hamiltonian H have in common the low-lying spectrum, which can be given by the projection operator, i.e., \(H^\mathrm{eff}=P_0^\dagger HP_0 \) wherein \(P_0^\dagger \) is the Hermitian operator of \(P_0 \). In the effective Hamiltonian, we consider only the first-order correction in the perturbation theory, which is

$$\begin{aligned} H^\mathrm{eff}=H_0^\mathrm{eff} +H_1^\mathrm{eff} =P_0^\dagger H^\mathrm{B}P_0 +P_0^\dagger H^\mathrm{BB}P_0. \end{aligned}$$
(A7)

At the same time, the projection operator \(P_0 \) can be put in a factorized form

$$\begin{aligned} P_0 =\prod _{i=1}^{N/2} {P_0^L }, \end{aligned}$$
(A8)

where the specific form of \(P_0^L\) is

$$\begin{aligned} P_0^L =\left| \Uparrow \right\rangle _L \left\langle {\phi _0 } \right| +\left| \Downarrow \right\rangle _L \left\langle {\phi _0 } \right| \end{aligned}$$
(A9)

with \(\left| \Uparrow \right\rangle _L \) and \(\left| \Downarrow \right\rangle _L \) are the renamed states of the Lth block to represent the effective site degrees of freedom. Then, the effective Hamiltonian of the renormalized ITF model can be cast into with the scaled couplings.

Now, we analytically present the derivation of global entanglement for the pure state \(\rho \). Explicitly, in the orthonormal product basis \(\left\{ {\left| {\downarrow \downarrow } \right\rangle ,\left| {\downarrow \uparrow } \right\rangle ,\left| {\uparrow \downarrow } \right\rangle ,\left| {\uparrow \uparrow } \right\rangle } \right\} \), the state \(\rho \) can be rewritten in the matrix form

$$\begin{aligned} \rho =\frac{1}{1+\left( {g+\sqrt{1+g^{2}}} \right) ^{2}}\left[ {{\begin{array}{cccc} {\left( {g+\sqrt{1+g^{2}}} \right) ^{2}}&{}\quad 0&{}\quad 0&{}\quad {g+\sqrt{1+g^{2}}} \\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ {g+\sqrt{1+g^{2}}}&{}\quad 0&{}\quad 0&{}\quad 1 \\ \end{array} }} \right] .\qquad \end{aligned}$$
(A10)

Then, the reduced density matrices \(\rho _k \) for the subsystem k are

$$\begin{aligned} \rho _1 =\rho _2 =\frac{1}{1+\left( {g+\sqrt{1+g^{2}}} \right) ^{2}}\left[ {{\begin{array}{cc} {\left( {g+\sqrt{1+g^{2}}} \right) ^{2}}&{}\quad 0 \\ 0&{}\quad 1 \\ \end{array} }} \right] . \end{aligned}$$
(A11)

Correspondingly,

$$\begin{aligned} \rho _1^2 =\rho _2^2 =\frac{1}{\left[ {1+\left( {g+\sqrt{1+g^{2}}} \right) ^{2}} \right] ^{2}}\left[ {{\begin{array}{cc} {\left( {g+\sqrt{1+g^{2}}} \right) ^{4}}&{}\quad 0 \\ 0&{}\quad 1 \\ \end{array} }} \right] . \end{aligned}$$
(A12)

Based on Eq. (A12), we can readily calculate the global entanglement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Ding, Z., He, J. et al. Renormalization of global entanglement and Bell nonlocality in the Ising model with a transverse field. Quantum Inf Process 16, 311 (2017). https://doi.org/10.1007/s11128-017-1745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1745-1

Keywords

Navigation