Skip to main content
Log in

Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An explicit scheme (quantum circuit) is designed for the teleportation of an n-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources have been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general n-qubit state considered here. A trade-off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof-of-principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. The experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional controlled state teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  3. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389–403 (2011)

    Article  MATH  Google Scholar 

  5. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  7. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)

    Article  Google Scholar 

  8. Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14, 4601–4614 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Nie, Y.-Y., Li, Y.-H., Liu, J.-C., Sang, M.-H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10, 297–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337–1344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)

    Article  MATH  Google Scholar 

  14. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Pathak, A.: Elements of quantum computation and quantum communication. Taylor & Francis, New York (2013)

    MATH  Google Scholar 

  16. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  17. Li, Y-h, Li, X-l, Nie, L-p, Sang, M-h: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)

    Article  MATH  Google Scholar 

  18. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Da-Chuang, L., Zhuo-Liang, C.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464 (2007)

    Article  ADS  Google Scholar 

  20. Li, Y-h, Nie, L-p, Li, X-l, Sang, M-h: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016)

    Article  MATH  Google Scholar 

  21. Song-Song, L., Yi-You, N., Zhi-Hui, H., Xiao-Jie, Y., Yi-Bin, H.: Controlled teleportation using four-particle cluster state. Commun. Theor. Phys. 50, 633 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cao, Z.-L., Song, W.: Teleportation of a two-particle entangled state via W class states. Phys. A Stat. Mech. Appl. 347, 177–183 (2005)

    Article  Google Scholar 

  23. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  24. Tsai, C.-W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49, 1969–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tan, X., Zhang, X., Song, T.: Deterministic quantum teleportation of a particular six-qubit state using six-qubit cluster state. Int. J. Theor. Phys. 55, 155–160 (2016)

    Article  MATH  Google Scholar 

  26. Wei, Z.-H., Zha, X.-W., Yu, Y.: Comment on teleportation protocol of three-qubit state using four-qubit quantum channels. Int. J. Theor. Phys. 55, 4687–4692 (2016)

    Article  MATH  Google Scholar 

  27. Li, Y-h, Sang, M-h, Wang, X-p, Nie, Y-y: Quantum teleportation of a four-qubit state by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3547–3550 (2016)

    Article  MATH  Google Scholar 

  28. Yu, L.Z.: Teleportation of an unknown three-particle entangled state via a cluster state. In: Advanced Materials Research, Trans Tech Publ, vol. 734, pp. 3022–3025 (2013)

  29. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  MATH  Google Scholar 

  30. Chen, P.-X., Zhu, S.-Y., Guo, G.-C.: General form of genuine multipartite entanglement quantum channels for teleportation. Phys. Rev. A 74, 032324 (2006)

    Article  ADS  Google Scholar 

  31. Man, Z.-X., Xia, Y.-J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007)

    Article  ADS  Google Scholar 

  32. Bouwmeester, D., Pan, J.-W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  33. Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998)

    Article  ADS  Google Scholar 

  34. Furusawa, A., Sørensen, J.L., Braunstein, S.L., et al.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  35. Zhao, Z., Chen, Y.-A., Zhang, A.-N., et al.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  36. Riebe, M., Häffner, H., Roos, C., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  37. Barrett, M., Chiaverini, J., Schaetz, T., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  Google Scholar 

  38. Sun, Q.-C., Mao, Y.-L., Chen, S.-J., et al.: Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon. 10, 671–675 (2016)

    Article  ADS  Google Scholar 

  39. IBM quantum computing platform. http://research.ibm.com/ibm-q/qx/ (2016). Accessed 04 May 2016

  40. Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 032329 (2016)

    Article  ADS  Google Scholar 

  41. Fedortchenko, S.: A quantum teleportation experiment for undergraduate students. arXiv preprint arXiv:1607.02398 (2016)

  42. Rundle, R., Tilma, T., Samson, J., Everitt, M.: Quantum state reconstruction made easy: a direct method for tomography. Phys. Rev. A 96, 022117 (2017)

    Article  ADS  Google Scholar 

  43. Malkoc, O.: Quantum computation with superconducting qubits. Quantum 1, 23 (2013)

    Google Scholar 

  44. Architecture used in 5-qubit quantum computer. https://github.com/IBM/qiskit-qx-info/blob/master/backends/ibmqx2/README.md (2017)

  45. Various parameters of IBM quantum computer. https://quantumexperience.ng.bluemix.net/qx/editor (2016). Accessed 04 May 2016

  46. Adami, C., Cerf, N.J.: Quantum computation with linear optics. In: Quantum Computing and Quantum Communications, pp. 391–401 Springer (1999)

  47. Chuang, I.L., Gershenfeld, N., Kubinec, M.G., Leung, D.W.: Bulk quantum computation with nuclear magnetic resonance: theory and experiment. In: Proceedings of the Royal Society of London A, vol. 454, pp. 447–467 (1998)

  48. Schmied, R.: Quantum state tomography of a single qubit: comparison of methods. J. Mod. Opt. 63, 1744–1758 (2016)

    Article  ADS  Google Scholar 

  49. Shukla, A., Rao, K.R.K., Mahesh, T.: Ancilla-assisted quantum state tomography in multiqubit registers. Phys. Rev. A 87, 062317 (2013)

    Article  ADS  Google Scholar 

  50. James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  51. Hebenstreit, M., Alsina, D., Latorre, J., Kraus, B.: Compressed quantum computation using the IBM quantum experience. Phys. Rev. A 95, 052339 (2017)

    Article  ADS  Google Scholar 

  52. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  53. Filipp, S., Maurer, P., Leek, P., et al.: Two-qubit state tomography using a joint dispersive readout. Phys. Rev. Lett. 102, 200402 (2009)

    Article  ADS  Google Scholar 

  54. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  55. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)

    Article  ADS  Google Scholar 

  56. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441–3464 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Joy, D., Surendran, S.P., et al.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. Quantum Inf. Process. 16, 157 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

AP, AS and KT thank Defense Research & Development Organization (DRDO), India, for the support provided through the Project Number ERIP/ER/1403163/M/01/1603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisodia, M., Shukla, A., Thapliyal, K. et al. Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf Process 16, 292 (2017). https://doi.org/10.1007/s11128-017-1744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1744-2

Keywords

Navigation