Skip to main content
Log in

Average entropy of a subsystem over a global unitary orbit of a mixed bipartite state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the average entropy of a subsystem within a global unitary orbit of a given mixed bipartite state in the finite-dimensional space. Without working out the closed-form expression of such average entropy for the mixed state case, we provide an analytical lower bound for this average entropy. In deriving this analytical lower bound, we get some useful by-products of independent interest. We also apply these results to estimate average correlation along a global unitary orbit of a given mixed bipartite state. When the notion of von Neumann entropy is replaced by linear entropy, the similar problem can be considered also, and moreover the exact average linear entropy formula is derived for a subsystem over a global unitary orbit of a mixed bipartite state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bravyi, S.: Compatibility between local and multipartite states. Quantum Inf. Comput. 4(1), 012–026 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975). doi:10.1016/0024-3795(75)90075-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Christandl, M., Doran, B., Kousidis, S., Walter, M.: Eigenvalue distributions of reduced density matrices. Commun. Math. Phys. 332, 1–52 (2014). doi:10.1007/s00220-014-2144-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Collins, B.: Moments and cumulants of polynomial random variables on unitary groups, the Itzykson–Zuber integral, and free probability. Int. Math. Res. Not. 17, 953 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Collins, B., Śniady, P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264(3), 773–795 (2006). doi:10.1007/s00220-006-1554-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dyer, J.P.: Divergence of Lubkin’s series for a quantum subsystem’s mean entropy, arXiv:1406.5776

  7. Foong, S.K., Kano, S.: Proof of Page’s conjecture on the average entropy of a subsystem. Phys. Rev. Lett. 72, 1148 (1994). doi:10.1103/PhysRevLett.72.1148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gessner, M., Breuer, H.-P.: Generic features of the dynamics of complex open quantum systems: statistical approach based on averages over the unitary group. Phys. Rev. E 87, 042128 (2013). doi:10.1103/PhysRevE.87.042128

    Article  ADS  Google Scholar 

  9. Giorda, P., Allegra, M.: Two-qubit correlations revisited: average mutual information, relevant (and useful) observables and an application to remote state preparation, arXiv: 1606.02197

  10. Hiai, F., Petz, D.: Introduction to Matrix Analysis and Applications. Hindustan Book Agency, Springer, Switzerland (2014)

  11. Jevtic, S., Jennings, D., Rudolph, T.: Maximally and minimally correlated states attainable within a closed evolving system. Phys. Rev. Lett. 108, 110403 (2012). doi:10.1103/PhysRevLett.108.110403

    Article  ADS  Google Scholar 

  12. Jevtic, S., Jennings, D., Rudolph, T.: Quantum mutual information along unitary orbits. Phys. Rev. A 85, 052121 (2012). doi:10.1103/PhysRevA.85.052121

    Article  ADS  Google Scholar 

  13. Klyachko, A.: Quantum marginal problem and \(N\)-representability. J. Phys. Conf. Ser. 36, 72–86 (2006)

    Article  Google Scholar 

  14. Lachal, A.: Probabilistic approach to Page’s formula for the entropy of a quantum system. Stoch. Int. J. Probab. Stoch. Process. 78, 157–178 (2006)

    Article  MATH  Google Scholar 

  15. Lubkin, E.: Entropy of an \(n\)-system from its correlation with a \(k\)-reservoir. J. Math. Phys. 19(5), 1028 (1978). doi:10.1063/1.523763

    Article  ADS  MATH  Google Scholar 

  16. Modi, K., Gu, M.: Coherent and incoherent contents of correlations. Int. J. Mod. Phys. B 27, 1345027 (2012). doi:10.1142/S0217979213450276

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Oszmaniec, M., Kuś, M.: Fraction of isospectral states exhibiting quantum correlations. Phys. Rev. A 90, 010302 (2014). doi:10.1103/PhysRevA.90.010302

    Article  ADS  Google Scholar 

  18. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993). doi:10.1103/PhysRevLett.71.1291

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Sen, S.: Average entropy of a quantum subsystem. Phys. Rev. Lett. 77, 1 (1996). doi:10.1103/PhysRevLett.77.1

    Article  ADS  Google Scholar 

  20. Sánchez-Ruiz, J.: Simple proof of Page’s conjecture on the average entropy of a subsystem. Phys. Rev. E 52, 5653 (1995). doi:10.1103/PhysRevE.52.5653

    Article  ADS  Google Scholar 

  21. Walter, M., Doran, B., Gross, D., Christandl, M.: Entanglement polytopes: multiparticle entanglement from single-particle information. Science 340, 6137 (2013). doi:10.1126/science.1232957

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, L.: Matrix integrals over unitary groups: an application of Schur–Weyl duality, arXiv:1408.3782v3

  23. Zhang, L.: Average coherence and its typicality for random mixed quantum states. J. Phys. A: Math. Theor. doi:10.1088/1751-8121/aa6179

  24. Zhang, L., Fei, S.-M.: Quantum fidelity and relative entropy between unitary orbits. J. Phys. A Math. Theor. 47, 055301 (2014). doi:10.1088/1751-8113/47/5/055301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhang, L., Chen, L., Bu, K.: Fidelity between one bipartite quantum state and another undergoing local unitary dynamics. Quantum Inf. Process. 14, 4715 (2015). doi:10.1007/s11128-015-1117-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Zhang, L., Singh, U., Pati, A.K.: Average subentropy, coherence and entanglement of random mixed quantum states. Ann. Phys. 377, 125–146 (2017). doi:10.1016/j.aop.2016.12.024

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

L. Zhang is supported by Natural Science Foundation of Zhejiang Province of China (LY17A010027) and also by National Natural Science Foundation of China (Nos.11301124 and 61673145). H. Xiang is supported by the National Natural Science Foundation of China (Nos.11571265 and 11471253). Michael Walter is also acknowledged for his comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Appendices

Appendix 1: The proof of Lemma 2.1

In this paper, we will utilize some notion of matrix integral [4, 5, 22]. The formula in Lemma 2.1 is given firstly. A detailed reasoning is presented here.

The proof of Lemma 2.1

Firstly, we note that

$$\begin{aligned}&\left\langle i_1 \left| UAU^\dagger BUXU^\dagger CUDU^\dagger \right| i'_1 \right\rangle \\&\quad = \sum _{j_1,j'_1} \left\langle i_1 \left| U \right| j_1 \right\rangle \left\langle j_1 \left| AU^\dagger BUXU^\dagger CUD \right| j'_1 \right\rangle \left\langle j'_1 \left| U^\dagger \right| i'_1 \right\rangle \\&\quad =\sum _{i_2,j_1,j_2,i'_2,j'_1,j'_2} U_{i_1j_1}\overline{U}_{i'_1j'_1}\left\langle j_1 \left| A \right| j'_2 \right\rangle \left\langle j'_2 \left| U^\dagger \right| i'_2 \right\rangle \left\langle i'_2 \left| BUXU^\dagger C \right| i_2 \right\rangle \\&\qquad \left\langle i_2 \left| U \right| j_2 \right\rangle \left\langle j_2 \left| D \right| j'_1 \right\rangle \\&\quad =\sum _{i_2,j_1,j_2,i'_2,j'_1,j'_2} U_{i_1j_1}U_{i_2j_2}\overline{U}_{i'_1j'_1}\overline{U}_{i'_2j'_2}\left\langle j_1 \left| A \right| j'_2 \right\rangle \left\langle i'_2 \left| BUXU^\dagger C \right| i_2 \right\rangle \left\langle j_2 \left| D \right| j'_1 \right\rangle \\&\quad =\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} U_{i_1j_1}U_{i_2j_2}\overline{U}_{i'_1j'_1}\overline{U}_{i'_2j'_2}\\&\quad ~~~\times \left\langle j_1 \left| A \right| j'_2 \right\rangle \left\langle i'_2 \left| B \right| i_3 \right\rangle \left\langle i_3 \left| U \right| j_3 \right\rangle \left\langle j_3 \left| X \right| j'_3 \right\rangle \left\langle j'_3 \left| U^\dagger \right| i'_3 \right\rangle \left\langle i'_3 \left| C \right| i_2 \right\rangle \left\langle j_2 \left| D \right| j'_1 \right\rangle \\&\quad =\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} U_{i_1j_1}U_{i_2j_2}U_{i_3j_3}\overline{U}_{i'_1j'_1}\overline{U}_{i'_2j'_2}\overline{U}_{i'_3j'_3}\left\langle j_1 \left| A \right| j'_2 \right\rangle \\&\qquad \left\langle i'_2 \left| B \right| i_3 \right\rangle \left\langle j_3 \left| X \right| j'_3 \right\rangle \left\langle i'_3 \left| C \right| i_2 \right\rangle \left\langle j_2 \left| D \right| j'_1 \right\rangle . \end{aligned}$$

Then we have:

$$\begin{aligned}&\left\langle i_1 \left| \int UAU^\dagger BUXU^\dagger CUDU^\dagger dU \right| i'_1 \right\rangle \\&\quad =\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3}A_{j_1,j'_2} B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \\&\qquad \left( \int U_{i_1j_1}U_{i_2j_2}U_{i_3j_3}\overline{U}_{i'_1j'_1}\overline{U}_{i'_2j'_2}\overline{U}_{i'_3j'_3}dU\right) \\&\quad = \sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2} B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \\&\quad ~~~\times \left( \sum _{\pi ,\sigma \in S_3} \langle i_1 | i'_{\pi (1)}\rangle \langle i_2 | i'_{\pi (2)}\rangle \langle i_3 | i'_{\pi (3)}\rangle \langle j_1 | j'_{\sigma (1)}\rangle \langle j_2 | j'_{\sigma (2)}\rangle \langle j_3 | j'_{\sigma (3)}\rangle \mathrm {Wg}(\sigma \pi ^{-1})\right) \\&\quad = \sum _{\pi ,\sigma \in S_3} \mathrm {Wg}(\sigma \pi ^{-1})\\&\quad ~~~\times \left( \sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1}\right. \\&\quad \left. \langle i_1 | i'_{\pi (1)}\rangle \langle i_2 | i'_{\pi (2)}\rangle \langle i_3 | i'_{\pi (3)}\rangle \langle j_1 | j'_{\sigma (1)}\rangle \langle j_2 | j'_{\sigma (2)}\rangle \langle j_3 | j'_{\sigma (3)}\rangle \right) . \end{aligned}$$

In what follows, we compute this value step by step.

  1. (1).

    If \((\pi ,\sigma )=((1),(1))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.4)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_{1}\rangle . \end{aligned}$$
    (4.5)
  2. (2).

    If \((\pi ,\sigma )=((1),(12))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.6)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_{1}\rangle . \end{aligned}$$
    (4.7)
  3. (3).

    If \((\pi ,\sigma )=((1),(13))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.8)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_1\rangle . \end{aligned}$$
    (4.9)
  4. (4).

    If \((\pi ,\sigma )=((1),(23))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.10)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_1\rangle . \end{aligned}$$
    (4.11)
  5. (5).

    If \((\pi ,\sigma )=((1),(123))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.12)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_1\rangle . \end{aligned}$$
    (4.13)
  6. (6).

    If \((\pi ,\sigma )=((1),(132))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.14)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_1\rangle . \end{aligned}$$
    (4.15)
  7. (7).

    If \((\pi ,\sigma )=((12),(1))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.16)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$
    (4.17)
  8. (8).

    If \((\pi ,\sigma )=((12),(12))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.18)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$
    (4.19)
  9. (9).

    If \((\pi ,\sigma )=((12),(13))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.20)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$
    (4.21)
  10. (10).

    If \((\pi ,\sigma )=((12),(23))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.22)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$
    (4.23)
  11. (11).

    If \((\pi ,\sigma )=((12),(123))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.24)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$
    (4.25)
  12. (12).

    If \((\pi ,\sigma )=((12),(132))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.26)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$
    (4.27)
  13. (13).

    If \((\pi ,\sigma )=((13),(1))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.28)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$
    (4.29)
  14. (14).

    If \((\pi ,\sigma )=((13),(12))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.30)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$
    (4.31)
  15. (15).

    If \((\pi ,\sigma )=((13),(13))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.32)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$
    (4.33)
  16. (16).

    If \((\pi ,\sigma )=((13),(23))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.34)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$
    (4.35)
  17. (17).

    If \((\pi ,\sigma )=((13),(123))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.36)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$
    (4.37)
  18. (18).

    If \((\pi ,\sigma )=((13),(132))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.38)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$
    (4.39)
  19. (19).

    If \((\pi ,\sigma )=((23),(1))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.40)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_{1}\rangle . \end{aligned}$$
    (4.41)
  20. (20).

    If \((\pi ,\sigma )=((23),(12))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.42)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_{1}\rangle . \end{aligned}$$
    (4.43)
  21. (21).

    If \((\pi ,\sigma )=((23),(13))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.44)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_1\rangle . \end{aligned}$$
    (4.45)
  22. (22).

    If \((\pi ,\sigma )=((23),(23))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.46)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_1\rangle . \end{aligned}$$
    (4.47)
  23. (23).

    If \((\pi ,\sigma )=((23),(123))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.48)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_1\rangle . \end{aligned}$$
    (4.49)
  24. (24).

    If \((\pi ,\sigma )=((23),(132))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.50)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_1\rangle . \end{aligned}$$
    (4.51)
  25. (25).

    If \((\pi ,\sigma )=((123),(1))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.52)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$
    (4.53)
  26. (26).

    If \((\pi ,\sigma )=((123),(12))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.54)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$
    (4.55)
  27. (27).

    If \((\pi ,\sigma )=((123),(13))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.56)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$
    (4.57)
  28. (28).

    If \((\pi ,\sigma )=((123),(23))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.58)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$
    (4.59)
  29. (29).

    If \((\pi ,\sigma )=((123),(123))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.60)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$
    (4.61)
  30. (30).

    If \((\pi ,\sigma )=((123),(132))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.62)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$
    (4.63)
  31. (31).

    If \((\pi ,\sigma )=((132),(1))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.64)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$
    (4.65)
  32. (32).

    If \((\pi ,\sigma )=((132),(12))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$
    (4.66)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$
    (4.67)
  33. (33).

    If \((\pi ,\sigma )=((132),(13))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.68)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$
    (4.69)
  34. (34).

    If \((\pi ,\sigma )=((132),(23))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.70)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$
    (4.71)
  35. (35).

    If \((\pi ,\sigma )=((132),(123))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$
    (4.72)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$
    (4.73)
  36. (36).

    If \((\pi ,\sigma )=((132),(132))\), then

    $$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$
    (4.74)
    $$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$
    (4.75)

    Combing the 36 cases together gives the desired conclusion:

    $$\begin{aligned}&\int UAU^\dagger BUXU^\dagger CUDU^\dagger \mathrm {d}\mu (U)= \mu _1\cdot \mathbb {1}_d+\mu _2\cdot BC+\mu _3\cdot CB \nonumber \\&\quad +\,\mu _4\cdot B + \mu _5\cdot C, \end{aligned}$$
    (4.76)

    where the coefficients \(\mu _j(j=1,\ldots ,5)\) are given below:

    $$\begin{aligned} \mu _1:= & {} \mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) , \end{aligned}$$
    (4.77)
    $$\begin{aligned} \mu _2:= & {} \mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) \nonumber \\&+\,\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) +\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( ADX\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( DAX\right) +\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) , \end{aligned}$$
    (4.78)
    $$\begin{aligned} \mu _3:= & {} \mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) +\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( ADX\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( DAX\right) +\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) , \end{aligned}$$
    (4.79)
    $$\begin{aligned} \mu _4:= & {} \mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( C\right) , \end{aligned}$$
    (4.80)
    $$\begin{aligned} \mu _5:= & {} \mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) . \end{aligned}$$
    (4.81)

We are done. \(\square \)

Remark 4.1

\(\mathrm {Wg}:=\frac{1}{(k!)^2}\sum _{\lambda \vdash k}\frac{\dim (\mathbf {P}_\lambda )^2}{\dim (\mathbf {Q}_\lambda )}\chi _\lambda \) is called the Weingarten function [4]. In particular, for \(\lambda \vdash 3\), we have:

$$\begin{aligned} \mathrm {Wg}(1,1,1)= & {} \frac{d^2-2}{d(d^2-1)(d^2-4)}=\left( d-\frac{2}{d}\right) \cdot \frac{1}{N_d}, \end{aligned}$$
(4.82)
$$\begin{aligned} \mathrm {Wg}(2,1)= & {} -\frac{1}{(d^2-1)(d^2-4)}=(-1)\cdot \frac{1}{N_d}, \end{aligned}$$
(4.83)
$$\begin{aligned} \mathrm {Wg}(3)= & {} \frac{2}{d(d^2-1)(d^2-4)} = \frac{2}{d}\cdot \frac{1}{N_d}, \end{aligned}$$
(4.84)

where \(N_d=(d^2-1)(d^2-4)\). With these coefficients, we then have

$$\begin{aligned} N_d\mu _1:= & {} \left( d-\frac{2}{d}\right) {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\left( d-\frac{2}{d}\right) {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\frac{2}{d}{{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\frac{2}{d}{{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( BC\right) +\frac{2}{d}{{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\frac{2}{d}{{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&-{{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&-{{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( BC\right) -{{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&-{{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) -{{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&-{{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) , \end{aligned}$$
(4.85)
$$\begin{aligned} N_d\mu _2:= & {} \left( d-\frac{2}{d}\right) {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) \nonumber \\&+\,\frac{2}{d}{{\mathrm{Tr}}}_{}\left( ADX\right) +\frac{2}{d}{{\mathrm{Tr}}}_{}\left( DAX\right) \nonumber \\&-{{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) -{{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) -{{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) , \end{aligned}$$
(4.86)
$$\begin{aligned} N_d\mu _3:= & {} \frac{2}{d}{{\mathrm{Tr}}}_{}\left( DAX\right) + \frac{2}{d}{{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) \nonumber \\&+\,\left( d-\frac{2}{d}\right) {{\mathrm{Tr}}}_{}\left( ADX\right) \nonumber \\&-{{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) -{{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) -{{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) , \end{aligned}$$
(4.87)
$$\begin{aligned} N_d\mu _4:= & {} \left( d-\frac{2}{d}\right) {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( C\right) +\frac{2}{d}{{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\frac{2}{d}{{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&- {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) - {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&- {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( C\right) , \end{aligned}$$
(4.88)
$$\begin{aligned} N_d\mu _5:= & {} \frac{2}{d}{{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) +\frac{2}{d}{{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\left( d-\frac{2}{d}\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&- {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&- {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) - {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) . \end{aligned}$$
(4.89)

Appendix 2: The proof of Theorem 2.2

By Lemma 2.1,

$$\begin{aligned}&\int U^\dagger M_{ij}UTU^\dagger M_{jl}UTU^\dagger M_{li}U\mathrm {d}\mu (U) \\&\quad = f(i,j,l)\cdot \mathbb {1}_d + g(i,j,l)\cdot T + h(i,j,l)\cdot T^2, \end{aligned}$$

where

$$\begin{aligned} f(i,j,l)= & {} \mathrm {Wg}(1,1,1)d^2_A\delta _{jl}{{\mathrm{Tr}}}_{}\left( T^2\right) \\&+\,\mathrm {Wg}(2,1)d^3_A\delta _{ij}\delta _{jl}\delta _{li}{{\mathrm{Tr}}}_{}\left( T^2\right) \\&+\,\mathrm {Wg}(2,1)d_A\delta _{ij}\delta _{jl}\delta _{li}{{\mathrm{Tr}}}_{}\left( T^2\right) \\&+\,\mathrm {Wg}(2,1)d_A{{\mathrm{Tr}}}_{}\left( T^2\right) +\mathrm {Wg}(3)d^2_A\delta _{ij}{{\mathrm{Tr}}}_{}\left( T^2\right) \\&+\,\mathrm {Wg}(3)d^2_A\delta _{il}{{\mathrm{Tr}}}_{}\left( T^2\right) \\&+\,\mathrm {Wg}(2,1)d^2_A\delta _{jl}{{\mathrm{Tr}}}_{}\left( T\right) ^2+\mathrm {Wg}(3)d^3_A\delta _{ij}\delta _{jl}\delta _{li}{{\mathrm{Tr}}}_{}\left( T\right) ^2 \\&+\,\mathrm {Wg}(3)d_A\delta _{ij}\delta _{jl}\delta _{li}{{\mathrm{Tr}}}_{}\left( T\right) ^2\\&+\,\mathrm {Wg}(1,1,1)d_A{{\mathrm{Tr}}}_{}\left( T\right) ^2+\mathrm {Wg}(2,1)d^2_A\delta _{ij}{{\mathrm{Tr}}}_{}\left( T\right) ^2 \\&+\,\mathrm {Wg}(2,1)d^2_A\delta _{il}{{\mathrm{Tr}}}_{}\left( T\right) ^2,\\ g(i,j,l)= & {} \mathrm {Wg}(3)d^2_A\delta _{jl}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(2,1)d^3_A\delta _{ij}\delta _{jl}\delta _{li}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(2,1)d_A\delta _{ij}\delta _{jl}\delta _{li}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(2,1)d_A{{\mathrm{Tr}}}_{}\left( T\right) +\mathrm {Wg}(1,1,1)d^2_A\delta _{ij}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(3)d^2_A\delta _{il}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(3)d^2_A\delta _{jl}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(2,1)d^3_A\delta _{ij}\delta _{jl}\delta _{li}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(2,1)d_A\delta _{ij}\delta _{jl}\delta _{li}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(2,1)d_A{{\mathrm{Tr}}}_{}\left( T\right) +\mathrm {Wg}(3)d^2_A\delta _{ij}{{\mathrm{Tr}}}_{}\left( T\right) \\&+\,\mathrm {Wg}(1,1,1)d^2_A\delta _{il}{{\mathrm{Tr}}}_{}\left( T\right) ,\\ h(i,j,l)= & {} \mathrm {Wg}(2,1)d^2_A\delta _{jl} \\&+\,\mathrm {Wg}(1,1,1)d^3_A\delta _{ij}\delta _{jl}\delta _{li} \\&+\,\mathrm {Wg}(3)d_A\delta _{ij}\delta _{jl}\delta _{li}\\&+\,\mathrm {Wg}(3)d_A+\mathrm {Wg}(2,1)d^2_A\delta _{ij} \\&+\,\mathrm {Wg}(2,1)d^2_A\delta _{il}, \\&+\,\mathrm {Wg}(2,1)d^2_A\delta _{jl} \\&+\,\mathrm {Wg}(3)d^3_A\delta _{ij}\delta _{jl}\delta _{li} \\&+\,\mathrm {Wg}(1,1,1)d_A\delta _{ij}\delta _{jl}\delta _{li}\\&+\,\mathrm {Wg}(3)d_A+\mathrm {Wg}(2,1)d^2_A\delta _{ij} \\&+\,\mathrm {Wg}(2,1)d^2_A\delta _{il}. \end{aligned}$$

Note that the meaning of the notation \(\mathrm {Wg}(*)\) can be found in Appendix. Thus for \(f:=\sum ^{d_B}_{i,j,l=1}f(i,j,l)\), \(g:=\sum ^{d_B}_{i,j,l=1}g(i,j,l)\), and \(h:=\sum ^{d_B}_{i,j,l=1}h(i,j,l)\), we have

$$\begin{aligned} f= & {} \left( [\mathrm {Wg}(1,1,1)+2\mathrm {Wg}(3)]d^2+ \mathrm {Wg}(2,1)(dd^2_A+d+dd^2_B)\right) {{\mathrm{Tr}}}_{}\left( T^2\right) \\&+\left( 3\mathrm {Wg}(2,1)d^2+\mathrm {Wg}(3)(dd^2_A+d)+\mathrm {Wg}(1,1,1)dd^2_B\right) {{\mathrm{Tr}}}_{}\left( T\right) ^2,\\ g= & {} \left( [4\mathrm {Wg}(3) + 2\mathrm {Wg}(1,1,1)]d^2+ 2\mathrm {Wg}(2,1)(dd^2_A + d +dd^2_B)\right) {{\mathrm{Tr}}}_{}\left( T\right) ,\\ h= & {} 6\mathrm {Wg}(2,1)d^2 + [\mathrm {Wg}(1,1,1)+\mathrm {Wg}(3)]dd^2_A \\&+\,[\mathrm {Wg}(1,1,1)+\mathrm {Wg}(3)]d+2\mathrm {Wg}(3)dd^2_B. \end{aligned}$$

Hence, for \(T=\mathbb {1}_A\otimes \mathbb {1}_B/d_B - \rho _{AB}\), \({{\mathrm{Tr}}}_{}\left( T\right) =d_A-1\) and \({{\mathrm{Tr}}}_{}\left( T^2\right) =\frac{d_A-2}{d_B}+{{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) \), then

$$\begin{aligned} f= & {} \frac{d\left( d^2-d^2_A-d^2_B+1\right) }{(d^2-1)(d^2-4)}{{\mathrm{Tr}}}_{}\left( T^2\right) \nonumber \\&+\,\frac{d^2\left( d^2_B-3\right) +2\left( d^2_A-d^2_B+1\right) }{(d^2-1)(d^2-4)}{{\mathrm{Tr}}}_{}\left( T\right) ^2,\end{aligned}$$
(4.90)
$$\begin{aligned}= & {} \frac{d_A\left( d^2_A-1\right) \left( d^2_B-1\right) }{(d^2-1)(d^2-4)}\left( d_A+d_B{{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) -2\right) \end{aligned}$$
(4.91)
$$\begin{aligned}&+\,\frac{\left( d^2-2d^2_A-2\right) \left( d^2_B-1\right) }{(d^2-1)(d^2-4)}(d_A-1)^2,\end{aligned}$$
(4.92)
$$\begin{aligned} g= & {} \frac{2d\left( d^2-d^2_A-d^2_B+1\right) }{(d^2-1)(d^2-4)}{{\mathrm{Tr}}}_{}\left( T\right) \nonumber \\= & {} \frac{2d\left( d_A-1\right) \left( d^2_A-1\right) \left( d^2_B-1\right) }{(d^2-1)(d^2-4)},\end{aligned}$$
(4.93)
$$\begin{aligned} h= & {} \frac{d^2\left( d^2_A-5\right) +4d^2_B}{(d^2-1)(d^2-4)} = \frac{\left( d^2_A-1\right) \left( d^2_A-4\right) d^2_B}{(d^2-1)(d^2-4)}. \end{aligned}$$
(4.94)

Therefore,

$$\begin{aligned} \int U^\dagger \left[ \Gamma (UTU^\dagger )\right] ^2U\mathrm {d}\mu (U) =f\cdot \mathbb {1}_d + g\cdot T + h\cdot T^2, \end{aligned}$$
(4.95)

implying that

$$\begin{aligned} a_2= & {} f + g\cdot {{\mathrm{Tr}}}_{}\left( \rho _{AB}T\right) + h\cdot {{\mathrm{Tr}}}_{}\left( \rho _{AB}T^2\right) \nonumber \\= & {} f + g\cdot \left( \frac{1}{d_B}-{{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) \right) + h\cdot \left( \frac{1}{d^2_B} - \frac{2}{d_B}{{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) +{{\mathrm{Tr}}}_{}\left( \rho ^3_{AB}\right) \right) \nonumber \\= & {} \left( f + g\frac{1}{d_B} + h\frac{1}{d^2_B}\right) - \left( g+h\frac{2}{d_B}\right) {{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) + h{{\mathrm{Tr}}}_{}\left( \rho ^3_{AB}\right) . \end{aligned}$$
(4.96)

We make further analysis of the term \(a_n\), although we have already known the fact that \(\lim _{n\rightarrow \infty }a_n=0\). Let \(\varphi _\rho (X)={{\mathrm{Tr}}}_{}\left( \rho X\right) \). Apparently, \(\varphi _\rho \) is a positive unital linear mapping (in fact, it is a positive unital linear functional from the set of \(n\times n\) Hermitian matrices to \(\mathbb {R}\)). It is easily seen that \(f(x)=x^n\) is a convex function from \(\mathbb {R}\) to \(\mathbb {R}\). By using [10, Theorem 4.15, pp 147], we see that

$$\begin{aligned} a_n= & {} \varphi _\rho \left( \int \left[ U^\dagger \Gamma (UTU^\dagger )U\right] ^n\mathrm {d}\mu (U)\right) = \varphi _\rho \left( \int f(U^\dagger \Gamma (UTU^\dagger )U)\mathrm {d}\mu (U)\right) \\= & {} \int \mathrm {d}\mu (U)(\varphi _\rho \circ f)(U^\dagger \Gamma (UTU^\dagger )U)\geqslant \int \mathrm {d}\mu (U) f[\varphi _\rho (U^\dagger \Gamma (UTU^\dagger )U)]\\\geqslant & {} \int \mathrm {d}\mu (U) \left[ {{\mathrm{Tr}}}_{}\left( \rho U^\dagger \Gamma (UTU^\dagger )U\right) \right] ^n\geqslant \left( {{\mathrm{Tr}}}_{}\left( \rho \int \mathrm {d}\mu (U)U^\dagger \Gamma (UTU^\dagger )U\right) \right) ^n. \end{aligned}$$

By (2.4), we have

$$\begin{aligned}&{{\mathrm{Tr}}}_{}\left( \rho \int \mathrm {d}\mu (U)U^\dagger \Gamma (UTU^\dagger )U\right) = \frac{d_A-1}{d^2-1} \\&\quad \left[ (1+dd_B) - (d+d_B){{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) \right] =a_1. \end{aligned}$$

Thus

$$\begin{aligned} a_n\geqslant & {} a^n_1. \end{aligned}$$
(4.97)

Then

$$\begin{aligned} a_1=\frac{(d_A-1)(d_B-1)}{d+1}+\frac{(d_A-1)(d+d_B)}{d^2-1}\mathrm {S}_L(\rho _{AB}), \end{aligned}$$

where \(\mathrm {S}_L(\rho _{AB})\in \left[ 0,1-\frac{1}{d}\right] \). Clearly

$$\begin{aligned} \frac{(d_A-1)(d_B-1)}{d+1}\leqslant a_1\leqslant \frac{(d_A-1)\left( 1+\frac{1}{d_A}\right) }{d+1}<1. \end{aligned}$$
(4.98)

Now,

$$\begin{aligned} \int \mathrm {S}(\rho '_A)\mathrm {d}\mu (U)=\sum ^\infty _{n=1}\frac{a_n}{n}\geqslant \sum ^\infty _{n=1}\frac{a^n_1}{n} = -\ln (1-a_1). \end{aligned}$$
(4.99)

We see from the above lower bound, i.e., \(-\ln (1-a_1)\), that when the purity of \(\rho _{AB}\) decreases, \(a_1\) increases. Hence such lower bound will be tighter.

Appendix 3: The proof of Proposition 3.2

Clearly, the first inequality is easily obtained

$$\begin{aligned} \int I(A:B)_{\rho '}\mathrm {d}\mu (U)\geqslant & {} \mathrm {S}\left( \rho _{AB}||\int \ln \left[ U^\dagger (\rho '_A\otimes \rho '_B)U\right] \mathrm {d}\mu (U)\right) \end{aligned}$$
(4.100)
$$\begin{aligned}= & {} \mathrm {S}\left( \rho _{AB}||c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) . \end{aligned}$$
(4.101)

In order to show the second inequality, note that, for any two density matrices \(\rho \) and \(\sigma \),

$$\begin{aligned} \mathrm {F}(\rho ,\sigma )\geqslant {{\mathrm{Tr}}}_{}\left( \sqrt{\rho }\sqrt{\sigma }\right) \geqslant {{\mathrm{Tr}}}_{}\left( \rho \sigma \right) . \end{aligned}$$
(4.102)

Then, for \(\rho '_{AB}=U\rho _{AB}U^\dagger \), we have

$$\begin{aligned} \mathrm {F}(\rho '_{AB},\rho '_A\otimes \rho '_B)\geqslant {{\mathrm{Tr}}}_{}\left( \rho '_{AB}\rho '_A\otimes \rho '_B\right) = {{\mathrm{Tr}}}_{}\left( \rho _{AB}U^\dagger \left( \rho '_A\otimes \rho '_B\right) U\right) ,\quad \quad \end{aligned}$$
(4.103)

implying that

$$\begin{aligned} \int \mathrm {F}(\rho '_{AB},\rho '_A\otimes \rho '_B)\mathrm {d}\mu (U)\geqslant & {} \int {{\mathrm{Tr}}}_{}\left( \rho _{AB}U^\dagger \left( \rho '_A\otimes \rho '_B\right) U\right) \mathrm {d}\mu (U) \nonumber \\= & {} c_0+c_1{{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) +c_2{{\mathrm{Tr}}}_{}\left( \rho ^3_{AB}\right) . \end{aligned}$$
(4.104)

By the concavity of fidelity, we have

$$\begin{aligned} \int \mathrm {F}\left( \rho '_{AB},\rho '_A\otimes \rho '_B\right) \mathrm {d}\mu (U)= & {} \int \mathrm {F}\left( \rho _{AB},U^\dagger \left( \rho '_A\otimes \rho '_B\right) U\right) \mathrm {d}\mu (U) \nonumber \\\leqslant & {} \mathrm {F}\left( \rho _{AB},c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) .\quad \quad \quad \quad \end{aligned}$$
(4.105)

Therefore,

$$\begin{aligned} c_0+c_1{{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) +c_2{{\mathrm{Tr}}}_{}\left( \rho ^3_{AB}\right)\leqslant & {} \int \mathrm {F}\left( \rho '_{AB},\rho '_A\otimes \rho '_B\right) \mathrm {d}\mu (U) \nonumber \\\leqslant & {} \mathrm {F}\left( \rho _{AB},c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) .\nonumber \\ \end{aligned}$$
(4.106)

This completes the proof.

Appendix 4: The proof of Theorem 3.4

Note that \(\rho '_{AB}=U\rho _{AB}U^\dagger \). We see from (3.8) that

$$\begin{aligned} \int I(A:B)_{\rho '}\mathrm {d}\mu (U)\geqslant \mathrm {S}\left( \rho _{AB} ||c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) . \end{aligned}$$
(4.107)

Since \(I(A:B)_{\rho '} = \mathrm {S}(\rho '_A)+\mathrm {S}(\rho '_B)-\mathrm {S}(\rho _{AB})\), it follows that

$$\begin{aligned}&\int \left( \mathrm {S}(\rho '_A)+\mathrm {S}(\rho '_B)-\mathrm {S}(\rho _{AB})\right) \mathrm {d}\mu (U)\geqslant \mathrm {S}\nonumber \\&\quad \left( \rho _{AB} ||c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) . \end{aligned}$$
(4.108)

That is,

$$\begin{aligned} \langle S_A+S_B\rangle \geqslant \mathrm {S}(\rho _{AB})+\mathrm {S}\left( \rho _{AB} ||c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) . \end{aligned}$$
(4.109)

This confirms the first inequality. Besides, by Eq. (3.4), we get

$$\begin{aligned} \mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right)= & {} \mathrm {S}\left( \int U^\dagger (\rho '_A\otimes \rho '_B)U \mathrm {d}\mu (U)\right) \end{aligned}$$
(4.110)
$$\begin{aligned}\geqslant & {} \int \mathrm {S}\left( U^\dagger (\rho '_A\otimes \rho '_B)U\right) \mathrm {d}\mu (U) \nonumber \\= & {} \int \mathrm {S}(\rho '_A)\mathrm {d}\mu (U)+\int \mathrm {S}(\rho '_B)\mathrm {d}\mu (U).\qquad \qquad \end{aligned}$$
(4.111)

This confirms the second inequality. Therefore, we have

$$\begin{aligned}&\mathrm {S}(\rho _{AB})+\mathrm {S}\left( \rho _{AB} ||c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) \\&\quad \leqslant \mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) . \end{aligned}$$

This is equivalent to the following

$$\begin{aligned}&\mathrm {S}\left( \rho _{AB} ||c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) \\&\quad \leqslant \mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) - \mathrm {S}(\rho _{AB}). \end{aligned}$$

Next, we show that \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) = \mathrm {S}(\rho _{AB})\) if and only if \(\rho _{AB}\) is maximally mixed state. Clearly, if \(\rho _{AB}\) is maximally mixed state, i.e., \(\mathrm {S}(\rho _{AB})=\ln (d)\), since \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) - \mathrm {S}(\rho _{AB})\geqslant 0\), then \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) \geqslant \ln (d)\), apparently \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) \leqslant \ln (d)\), thus \(\mathrm {S}(\rho _{AB})=\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) =\ln (d)\), the maximum of von Neuman entropy. Reversely, if \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) = \mathrm {S}(\rho _{AB})\), then by the obtained inequality, we have

$$\begin{aligned} \mathrm {S}\left( \rho _{AB} ||c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) =0, \end{aligned}$$

which holds if and only if \(\rho _{AB} = c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\). This means that for any eigenvalue \(\lambda (\geqslant 0)\) of \(\rho _{AB}\) must satisfy that

$$\begin{aligned} c_2\lambda ^2 +(c_1-1)\lambda +c_0=0. \end{aligned}$$

Solving this equation, we get

$$\begin{aligned} \lambda = \frac{(1-c_1)-\sqrt{(1-c_1)^2-4c_0c_2}}{2c_2}=\frac{1}{d}. \end{aligned}$$

Note that we have dropped another root being larger than one. Thus \(\rho _{AB}\) is maximally mixed state. In fact, we get that \(\rho _{AB} = c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\) if and only if \(\rho _{AB}\) is maximally mixed state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xiang, H. Average entropy of a subsystem over a global unitary orbit of a mixed bipartite state. Quantum Inf Process 16, 112 (2017). https://doi.org/10.1007/s11128-017-1570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1570-6

Keywords

Navigation