Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 902))

  • 2643 Accesses

Abstract

Entanglement is a central feature of quantum mechanical systems that lies at the heart of most quantum information processing tasks. In this chapter, based on lectures by K.R. Parthasarathy, we examine the important question of quantifying entanglement in bipartite quantum systems. We begin with a brief review of the mathematical framework of quantum states and probabilities and formally define the notion of entanglement in composite Hilbert spaces via the Schmidt number and Schmidt rank. For pure bipartite states in a finite-dimensional Hilbert space, we study the question of how many subspaces exist in which all unit vectors are of a certain minimal Schmidt number k. For mixed states, we describe the role of k-positive maps in identifying states whose Schmidt rank exceeds k. Finally, we compute the Schmidt rank of an interesting class of states called generalized Werner states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the bra-ket notation, \(\text{Tr}[\vert u\rangle \langle v\vert ] \equiv \langle v\vert u\rangle\).

  2. 2.

    Since deterministic state changes are effected by unitary operators in quantum theory, unitaries are often referred to as quantum gates in the quantum computing literature.

  3. 3.

    A remark on notation: we use \(\mathbb{I}\) to denote the identity map \(\mathbb{I}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})\) , with \(\mathbb{I}(\rho ) =\rho\) for any \(\rho \in \mathcal{B}(\mathcal{H})\).

References

  1. C.H. Bennett, S.J.Wiesner, Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Google Scholar 

  2. K.R. Davidson, L.W. Marcoux, H. Radjavi, Transitive spaces of operators. Integr. Equ. Oper. Theory 61, 187–210 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Harris, Algebraic Geometry: A First Course (Springer, New York, 1992)

    Book  MATH  Google Scholar 

  4. M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  7. K.R. Parthasarathy, Extremal quantum states in coupled systems. Ann. Inst. Henri Poincare B Probab. Stat. 41(3), 257–268 (2005)

    Article  ADS  MATH  Google Scholar 

  8. K.R. Parthasarathy, Lectures on Quantum Computation, Quantum Error Correcting Codes and Information Theory (Tata Institute of Fundamental Research, Mumbai, 2006)

    MATH  Google Scholar 

  9. K.R. Parthasarathy, Coding Theorems of Classical and Quantum Information Theory (Hindustan Book Agency, New Delhi, 2013)

    MATH  Google Scholar 

  10. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. B.M. Terhal, P. Horodecki, Schmidt number for density matrices. Phys. Rev. A 61(4), 040301 (2000)

    Google Scholar 

  12. R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, V.P., Mandayam, P., Sunder, V.S. (2015). Entanglement in Bipartite Quantum States. In: The Functional Analysis of Quantum Information Theory. Lecture Notes in Physics, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-319-16718-3_2

Download citation

Publish with us

Policies and ethics