An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption

  • Long Zhang
  • Hong-Wei Sun
  • Ke-Jia Zhang
  • Heng-Yue Jia


In this paper, a new quantum encryption based on the key-controlled chained CNOT operations, which is named KCCC encryption, is proposed. With the KCCC encryption, an improved arbitrated quantum signature (AQS) protocol is presented. Compared with the existing protocols, our protocol can effectively prevent forgery attacks and disavowal attacks. Moreover, only single state is required in the protocol. We hope it is helpful to further research in the design of AQS protocols in future.


Arbitrated quantum signature Chained CNOT operations Forgery attacks Disavowal attacks 



This work is supported by the National Natural Science Foundation of China under Grant Nos. 11647128 and 61309029, China Scholarship Council under Grant No. 201607320084, Natural Science Foundation of Heilongjiang Province under Grant No. A2016007, Youth Foundation of Heilongjiang University under Grant No. QL201501.


  1. 1.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. quant-ph/9605043v3 (1996)Google Scholar
  3. 3.
    Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Xin, L., Qiaoyan, W., Tingting, S., Zhang, J.: Quantum Steganography with high efficiency with noisy depolarizing channels. IEICE Trans. Fundam. E96–A(10), 2039–2044 (2013)Google Scholar
  5. 5.
    Yang, Y.-G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fatahi, N., Naseri, M.: Quantum watermarking using entanglement swapping. Int. J. Theor. Phys. 51(7), 2094–2100 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Song, X.-H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.-M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A 83(2), 022310 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Liao, X., Shu, C.: Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J. Vis. Commun. Image Represent. 28(4), 21–27 (2015)CrossRefGoogle Scholar
  10. 10.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)Google Scholar
  11. 11.
    Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSCrossRefMATHGoogle Scholar
  15. 15.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Hillery, M., Buzk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Proc. 12(1), 365–380 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Chen, X.B., Yang, S., Xu, G., Su, Y., Yang, Y.X.: Cryptanalysis of the quantum state sharing protocol using four sets of \(W\)-class states. Int. J. Quantum Inf. 11(1), 1350010 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradler-dusek protocol. Quantum Inf. Comput. 7, 329 (2007)MathSciNetMATHGoogle Scholar
  26. 26.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)ADSCrossRefMATHGoogle Scholar
  29. 29.
    W’ojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    W’ojcik, A.: Comment on “Quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”. Phys. Lett. A 360, 748 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus \(N\)-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Cai, Q.Y.: The “ping-pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Chen, X.B., Yang, S., Su, Y., Yang, Y.X.: Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Phys. Scr. 86, 055002 (2012)ADSCrossRefMATHGoogle Scholar
  39. 39.
    Gottesman, D., Chuang, I.: Quantum digital signatures. quant-ph/0105032v2 (2001)Google Scholar
  40. 40.
    Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of Quantum Messages. IEEE Computer Society Press, Washington, DC (2002). pp 449–458Google Scholar
  42. 42.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85, 056301 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inf. Process. 14(6), 2171–2181 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Luo, Y.P., Hwang, T.: Comment on “An arbitrated quantum signature protocol based on the chained CNOT operations encryption”. Preprint arXiv:1512.00711 (2015)
  52. 52.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Wang, Y., Xu, K., Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum crypotosystem. Int. J. Theor. Phys. 53(1), 28–38 (2014)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Chao, W., Jian-Wei, L., Tao, S.: Enhanced arbitrated quantum signature scheme using Bell states. Chin. Phys. B 23(6), 060309 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Long Zhang
    • 1
  • Hong-Wei Sun
    • 1
  • Ke-Jia Zhang
    • 1
    • 2
    • 3
  • Heng-Yue Jia
    • 4
  1. 1.School of Mathematical ScienceHeilongjiang UniversityHarbinChina
  2. 2.School of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina
  3. 3.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  4. 4.School of InformationCentral University of Finance and EconomicsBeijingChina

Personalised recommendations