Skip to main content
Log in

An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption

Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a new quantum encryption based on the key-controlled chained CNOT operations, which is named KCCC encryption, is proposed. With the KCCC encryption, an improved arbitrated quantum signature (AQS) protocol is presented. Compared with the existing protocols, our protocol can effectively prevent forgery attacks and disavowal attacks. Moreover, only single state is required in the protocol. We hope it is helpful to further research in the design of AQS protocols in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. quant-ph/9605043v3 (1996)

  3. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  4. Xin, L., Qiaoyan, W., Tingting, S., Zhang, J.: Quantum Steganography with high efficiency with noisy depolarizing channels. IEICE Trans. Fundam. E96–A(10), 2039–2044 (2013)

    Google Scholar 

  5. Yang, Y.-G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Fatahi, N., Naseri, M.: Quantum watermarking using entanglement swapping. Int. J. Theor. Phys. 51(7), 2094–2100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Song, X.-H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.-M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A 83(2), 022310 (2011)

    Article  ADS  Google Scholar 

  9. Liao, X., Shu, C.: Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J. Vis. Commun. Image Represent. 28(4), 21–27 (2015)

    Article  Google Scholar 

  10. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  11. Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  16. Hillery, M., Buzk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  18. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Proc. 12(1), 365–380 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  20. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  21. Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  22. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  23. Chen, X.B., Yang, S., Xu, G., Su, Y., Yang, Y.X.: Cryptanalysis of the quantum state sharing protocol using four sets of \(W\)-class states. Int. J. Quantum Inf. 11(1), 1350010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)

    Article  ADS  Google Scholar 

  25. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradler-dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)

    Article  ADS  Google Scholar 

  27. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)

    Article  ADS  Google Scholar 

  28. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  MATH  Google Scholar 

  29. W’ojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  30. W’ojcik, A.: Comment on “Quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  32. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus \(N\)-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)

    Article  ADS  Google Scholar 

  33. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  34. Cai, Q.Y.: The “ping-pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  35. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  36. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  37. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  38. Chen, X.B., Yang, S., Su, Y., Yang, Y.X.: Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Phys. Scr. 86, 055002 (2012)

    Article  ADS  MATH  Google Scholar 

  39. Gottesman, D., Chuang, I.: Quantum digital signatures. quant-ph/0105032v2 (2001)

  40. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  41. Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of Quantum Messages. IEEE Computer Society Press, Washington, DC (2002). pp 449–458

    Google Scholar 

  42. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  43. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  45. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  46. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Article  ADS  Google Scholar 

  47. Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85, 056301 (2012)

    Article  ADS  Google Scholar 

  49. Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inf. Process. 14(6), 2171–2181 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Luo, Y.P., Hwang, T.: Comment on “An arbitrated quantum signature protocol based on the chained CNOT operations encryption”. Preprint arXiv:1512.00711 (2015)

  52. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Wang, Y., Xu, K., Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum crypotosystem. Int. J. Theor. Phys. 53(1), 28–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chao, W., Jian-Wei, L., Tao, S.: Enhanced arbitrated quantum signature scheme using Bell states. Chin. Phys. B 23(6), 060309 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11647128 and 61309029, China Scholarship Council under Grant No. 201607320084, Natural Science Foundation of Heilongjiang Province under Grant No. A2016007, Youth Foundation of Heilongjiang University under Grant No. QL201501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jia Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Sun, HW., Zhang, KJ. et al. An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf Process 16, 70 (2017). https://doi.org/10.1007/s11128-017-1531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1531-0

Keywords

Navigation