Skip to main content
Log in

The Security Problems in Some Novel Arbitrated Quantum Signature Protocols

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the development of quantum signature, two improved arbitrated quantum signature(AQS) protocols have been presented with different quantum encryptions. In this paper, some security loopholes during the two AQS protocols are proposed. In the enhanced arbitrated quantum signature(EAQS) protocol, though the signer is not able to deny his signature, the receiver can still forge some valid signatures. In the chaos-based arbitrated quantum signature(CAQS) protocol, the receiver can forge a valid signature without being caught, and the signer can also deny her signature after the signing phase. Finally, some potential improved ideas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  2. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. arXiv:quant-ph/9605043v3 (1996)

  4. Liao, X., Wen, Q., Song, T., Zhang, J.: Quantum steganography with high efficiency with noisy depolarizing Channels.pdf. IEICE Trans. Fundam. E96-A (10), 2039—2044 (2013)

    Article  Google Scholar 

  5. Yang, Y-G, Jia, X, Xu, P, Tian, J: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Fatahi, N, Naseri, M: Quantum watermarking using entanglement swapping. Int. J. Theor. Phys. 51(7), 2094–2100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Song, X-H, Wang, S, Liu, S, Abd El-Latif, AA, Niu, X-M: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A 83(2), 022310 (2011)

    Article  ADS  Google Scholar 

  9. Wei, C Y, Wang, T Y, Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)

    Article  ADS  Google Scholar 

  10. Liao, X, Shu, C: Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J. Vis. Commun. Image Represent. 28 (4), 21–27 (2015)

    Article  Google Scholar 

  11. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  12. Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  16. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  17. Hillery, M., Buzĕk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  19. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Proc. 12(1), 365–380 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  21. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  22. Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  23. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  24. Chen, X.B., Yang, S., Xu, G., Su, Y., Yang, Y.X.: Cryptanalysis of the quantum state sharing protocol using four sets of W-class states. Int. J. Quantum Inform. 11(1), 1350010 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)

    Article  ADS  Google Scholar 

  26. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradler-dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)

    Article  ADS  Google Scholar 

  28. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)

    Article  ADS  Google Scholar 

  29. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  MATH  Google Scholar 

  30. W’ojcik, A.: Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  31. W’ojcik, A.: Comment on “Quantum dense key distribution. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  Google Scholar 

  32. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  33. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)

    Article  ADS  Google Scholar 

  34. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  35. Cai, Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  36. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  37. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  38. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  39. Chen, X.B., Yang, S., Su, Y., Yang, Y.X.: Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Phys. Scr. 86, 055002 (2012)

    Article  ADS  MATH  Google Scholar 

  40. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032v2 (2001)

  41. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  42. Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of Quantum Messages, pp 449–458. IEEE Computer Society Press, Washington DC (2002)

    Google Scholar 

  43. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  44. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  45. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  46. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Article  ADS  Google Scholar 

  47. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85, 056301 (2012)

    Article  ADS  Google Scholar 

  48. Zhang, K J, Qin, S J, Sun, Y, et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Zhang, K J, Zhang, W W, Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wang, C, Liu, J W, Shang, T.: Enhanced arbitrated quantum signature scheme using Bell states. Chin. Phys. B 23(6), 060309 (2014)

    Article  ADS  Google Scholar 

  51. Wang, Y, Xu, K, Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum crypotosystem. Int. J. Theor. Phys. 53(1), 28–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gao, F, Qin, S J, Guo, F Z, et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  53. Zuo, H, Zhang, K, Song, T.: Security analysis of quantum multi-signature protocol based on teleportation. Quantum Inf. Process. 12(7), 2343–2353 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Zuo, H.: Cryptanalysis of quantum blind signature scheme. Int. J. Theor. Phys. 52(1), 322–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, L, Sun, H W, Zhang, K J, et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No.11647128, the Natural Science Foundation of Heilongjiang Province under Grant No.A2016007, the China Scholarship Council (Grant No.201506470043, 201607320084) and Youth Foundation of Heilongjiang University under Grant No.QL201501, the National Natural Science Foundation of China (Grant No.61602232), and the Key Scientific Project in Universities of Henan Province (Grant No.16A520021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jia Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Sun, HW., Zhang, KJ. et al. The Security Problems in Some Novel Arbitrated Quantum Signature Protocols. Int J Theor Phys 56, 2433–2444 (2017). https://doi.org/10.1007/s10773-017-3394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3394-7

Keywords

Navigation