Skip to main content
Log in

Quantum secret sharing using the d-dimensional GHZ state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a quantum secret sharing scheme that uses an orthogonal pair of n-qudit GHZ states and local distinguishability. In the proposed protocol, the participants use an X-basis measurement and classical communication to distinguish between the two orthogonal states and reconstruct the original secret. We also present (2, n)-threshold and generalized restricted (2, n)-threshold schemes that enable any two cooperating players from two disjoint groups to always reconstruct the secret. Compared to the existing scheme by Rahaman and Parker (Phys Rev A 91:022330, 2015), the proposed scheme is more general and the access structure contains more authorized sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blakley, G.R.: In: Proceedings of the National Computer Conference (AFIPS, 1979), pp. 313–317 (1979)

  3. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  5. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39, 14089–14099 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  8. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  9. Dehkordi, M.H., Fattahi, E.: Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state. Quantum Inf. Process. 12(2), 1299–1306 (2013)

    Article  ADS  MATH  Google Scholar 

  10. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  12. Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73, 062316 (2006)

    Article  ADS  Google Scholar 

  13. Qin, H.W., Zhu, X.H., Dai, Y.W.: \((t, n)\) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14, 2997–3004 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Qin, H.W., Dai, Y.W.: Proactive quantum secret sharing. Quantum Inf. Process. 14, 4237–4244 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Li, X.H., Zhou, P., Li, C.Y., Zhou, H.Y., Deng, F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B At. Mol. Opt. Phys. 39, 1975–1983 (2006)

    Article  ADS  Google Scholar 

  16. Li, D., Xiu, X.M., GAO, Y.J.: Multiparty quantum state sharing of m-qubit state. Int. J. Mod. Phys. C 18, 1699 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Zhang, Z., Liu, W., Li, C.: Quantum secret sharing based on quantum error-correcting codes. Chin. Phys. B 20(5), 050309 (2011)

    Article  ADS  Google Scholar 

  18. Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71, 022321 (2005)

    Article  ADS  Google Scholar 

  19. Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)

    Article  ADS  Google Scholar 

  20. Sarvepalli, P., Raussendorf, R.: Matroids and quantum-secret-sharing schemes. Phys. Rev. A 81, 052333 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Karimipour, V., Asoudeh, M., Gheorghiu, V., Looi, S.Y., Griffiths, R.B.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92, 030301(R) (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13(8), 1907–1916 (2014)

    Article  ADS  MATH  Google Scholar 

  23. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  24. Gheorghiu, V., Sanders, B.C.: Accessing quantum secrets via local operations and classical communication. Phys. Rev. A 88(2), 022340 (2013)

    Article  ADS  Google Scholar 

  25. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  26. Li, X.H., Deng, F.G., Zhou, H.Y.: Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger–Horne–Zeilinger states. Chin. Phys. Lett. 24, 1151 (2007)

    Article  ADS  Google Scholar 

  27. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302(R) (2015)

    Article  ADS  Google Scholar 

  28. Qin, H., Dai, Y.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional Bell state. Inf. Process. Lett. 116(5), 351–355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  30. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  31. Li, C.Y., Li, X.H., Deng, F.G., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)

    Article  ADS  Google Scholar 

  32. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    Article  ADS  Google Scholar 

  33. Blundo, C., De Santis, A., Stinson, D.R., Vaccaro, U.: Graph decompositions and secret sharing schemes. J. Cryptol. 8(1), 39–64 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. Gisin, N., Fasel, S., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  36. Deng, F., Li, X., Zhou, H., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  37. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  38. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  39. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12(1), 685–697 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Lin, J., Yang, C.W., Tsai, C.W., Hwang, T.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, C.W., Hwang, T., Luo, T.: Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We want to express our gratitude to anonymous referees for their valuable and constructive comments. This work was sponsored by the National Natural Science Foundation of China under Grant Nos. 61373150 and 61602291, and Industrial Research and Development Project of Science and Technology of Shaanxi Province under Grant No. 2013k0611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, CM., Li, ZH., Xu, TT. et al. Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf Process 16, 59 (2017). https://doi.org/10.1007/s11128-016-1506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1506-6

Keywords

Navigation