Skip to main content
Log in

New circular quantum secret sharing for remote agents

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This study presents a novel circular quantum secret sharing (QSS) protocol based on the controlled-NOT (CNOT) gate for remote agents. A CNOT gate is able to entangle a Bell state and several single photons to form a multi-particle GHZ state. Using this technique, the proposed QSS scheme is designed in purpose to be congenitally free from the Trojan horse attacks. Moreover, for each shared bit among n party, the qubit efficiency has reached \({\frac{1}{2n+1}}\), which is the best among the current circular QSS’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Gottesman D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. Zhang Z.J., Li Y., Man Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Zhang Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342(1-2), 60–66 (2005)

    Article  ADS  MATH  Google Scholar 

  5. Deng F.G., Zhou H.Y., Long G.L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39(45), 14089–14099 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Zhang Z.J., Gao G., Wang X., Han L.F., Shi S.H.: Multiparty quantum secret sharing based on the improved Boström-Felbinger protocol. Opt. Commun. 269(2), 418–422 (2007)

    Article  ADS  Google Scholar 

  7. Han L.F., Liu Y.M., Liu J., Zhang Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)

    Article  ADS  Google Scholar 

  8. Wang T.Y., Wen Q.Y., Chen X.B., Guo F.Z., Zhu F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281(24), 6130–6134 (2008)

    Article  ADS  Google Scholar 

  9. Deng F.G., Long G.L., Zhou H.Y.: An efficient quantum secret sharing scheme with Einstein- Podolsky-Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  10. Deng F.G., Li X.H., Zhou H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Gu B., Li C.Q., Xu F., Chen Y.L.: High-capacity three-party quantum secret sharing with superdense coding. Chin. Phys. B 18(11), 4690–4694 (2009)

    Article  ADS  Google Scholar 

  12. Gu B., Mu L., Ding L., Zhang C., Li C.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)

    Article  ADS  Google Scholar 

  13. Zhu Z.C., Zhang Y.Q., Fu A.M.: Efficient quantum secret sharing scheme with two-particle entangled states. Chin. Phys. B 20(4), 040306 (2011)

    Article  ADS  Google Scholar 

  14. Guo G.P., Guo G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Hsu L.Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68(2), 022306 (2003)

    Article  ADS  Google Scholar 

  16. Xiao L., Long G.L., Deng F.G., Pan J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  17. Li Y., Zhang K., Peng K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Hsu L.Y., Li C.M.: Quantum secret sharing using product states. Phys. Rev. A 71(2), 022321 (2005)

    Article  ADS  Google Scholar 

  19. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Zhou P., Li X.H., Liang Y.J., Deng F.G., Zhou H.Y.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Phys. A 381, 164–169 (2007)

    Article  MathSciNet  Google Scholar 

  21. Sun Y., Wen Q.Y., Gao F., Chen X.B., Zhu F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  22. Shi R.H., Huang L.S., Yang W., Zhong H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  23. Chen J.H., Lee K.C., Hwang T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phy. C 20(10), 1531–1535 (2009)

    Article  ADS  MATH  Google Scholar 

  24. Hsieh C.R., Tsai C.W., Hwang T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)

    Article  MATH  Google Scholar 

  25. Lin J., Hwang T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  26. Hwang T., Hwang C.C., Li C.M.: Multiparty quantum secret sharing based on GHZ states. Phys. Scr. 83(4), 045004 (2011)

    Article  ADS  Google Scholar 

  27. Yang C.-W., Tsai C.-W., Tsai C.-W., Tsai C.-W.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hwang, T., Hwang, C.C., Yang, C.W., Li, C.M.:Revisiting Deng et al.’s multiparty quantum secret sharing protocol. Int. J. Theor. Phys. (2011-03-23 Accepted)

  29. Tsai, C.W., Hwang, T.: Multiparty quantum secret sharing based on two special entangled states. Sci. China Ser. G Phys. Mech. Astron. (2011-03-31 Accepted)

  30. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum Cryptogr. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  31. Deng F.G., Li X.H., Zhou H.Y., Zhang Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  32. Li X.H., Deng F.G., Zhou H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  33. Cai Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  34. Monroe C., Meekhof D.M., King B.E., Itano W.M., Wineland D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714–4717 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Zukowski M., Zeilinger A., Horne M.A., Ekert A.K.: Event-ready-detectors: Bell experiment via entanglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)

    Article  ADS  Google Scholar 

  37. Pan J.W., Bouwmeester D., Weinfurter H., Zeilinger A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80(18), 3891–3894 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Bose S., Vedral V., Knight P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822–829 (1998)

    Article  ADS  Google Scholar 

  39. Jennewein T., Simon C., Weihs G., Weinfurter H., Zeilinger A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729–4732 (2000)

    Article  ADS  Google Scholar 

  40. Wang T.Y., Wen Q.Y., Gao F., Lin S., Zhu F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373(1), 65–68 (2008)

    Article  ADS  MATH  Google Scholar 

  41. Gao G.: Simple collaboration eavesdropping on the improved multiparty quantum secret sharing protocol. Int. J. Theor. Phys. 49(9), 2210–2214 (2010)

    Article  MATH  Google Scholar 

  42. Wang S.H., Chong S.K., Hwang T.: On multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(21), 4405–4407 (2010)

    Article  ADS  Google Scholar 

  43. Stucki D., Gisin N., Guinnard O., Ribordy G., Zbinden H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 4, 41.1–41.8 (2002)

    Article  Google Scholar 

  44. Hughes R.J., Nordholt J.E., Derkacs D., Peterson C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New. J. Phys. 4, 43.1–43.14 (2002)

    Article  Google Scholar 

  45. Beveratos A., Brouri R., Gacoin T., Villing A., Poizat J.P., Grangier P.: Single Photon Quantum Cryptography. Phys. Rev. Lett. 89(18), 187901 (2002)

    Article  ADS  Google Scholar 

  46. Gobby C., Yuan Z.L., Shields A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)

    Article  ADS  Google Scholar 

  47. Kok P., Williams C.P., Dowling J.P.: Construction of a quantum repeater with linear optics. Phys. Rev. A 68(2), 022301 (2003)

    Article  ADS  Google Scholar 

  48. Zhao Z., Yang T., Chen Y.A., Zhang A.N., Pan J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90(20), 207901 (2003)

    Article  ADS  Google Scholar 

  49. Chen S., Chen Y.A., Zhao B., Yuan Z.S., Schmiedmayer J., Pan J.W.: Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99(18), 180505 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Hwang, T. New circular quantum secret sharing for remote agents. Quantum Inf Process 12, 685–697 (2013). https://doi.org/10.1007/s11128-012-0413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0413-8

Keywords

Navigation