Skip to main content
Log in

Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Milz and Strunz (J Phys A 48:035306, 2015) recently studied the probabilities that two-qubit and qubit–qutrit states, randomly generated with respect to Hilbert–Schmidt (Euclidean/flat) measure, are separable. They concluded that in both cases, the separability probabilities (apparently exactly \(\frac{8}{33}\) in the two-qubit scenario) hold constant over the Bloch radii (r) of the single-qubit subsystems, jumping to 1 at the pure state boundaries (\(r=1\)). Here, firstly, we present evidence that in the qubit–qutrit case, the separability probability is uniformly distributed, as well, over the generalized Bloch radius (R) of the qutrit subsystem. While the qubit (standard) Bloch vector is positioned in three-dimensional space, the qutrit generalized Bloch vector lives in eight-dimensional space. The radii variables r and R themselves are the lengths/norms (being square roots of quadratic Casimir invariants) of these (“coherence”) vectors. Additionally, we find that not only are the qubit–qutrit separability probabilities invariant over the quadratic Casimir invariant of the qutrit subsystem, but apparently also over the cubic one—and similarly the case, more generally, with the use of random induced measure. We also investigate two-qutrit (\(3 \times 3\)) and qubit–qudit (\(2 \times 4\)) systems—with seemingly analogous positive partial transpose-probability invariances holding over what has been termed by Altafini the partial Casimir invariants of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gamel, O.:arXiv preprint arXiv:1602.01548 (2016)

  2. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  3. Petz, D., Sudár, C.: Geometries of quantum states. J. Math. Phys. 37, 2662–2673 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Szarek, S., Bengtsson, I., Życzkowski, K.: On the structure of the body of states with positive partial transpose. J. Phys. A 39, L119 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Gerdt, V., Mladenov, D., Palii, Y., Khvedelidze, A.: SU(6) Casimir invariants and SU(2) \(\otimes \) SU(3) scalars for a mixed qubit-qutrit state. J. Math. Sci. 179, 690 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goyal, S.K., Simon, B.N., Singh, R., Simon, S.: Geometry of the generalized Bloch sphere for qutrits. J. Phys. A: Math. Theor. 49, 165203 (2016)

  8. Kimura, G.: The Bloch vector for N-level systems. Phys. Lett. A 314, 339–349 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Scutaru, H.: A new form of the characteristic equation of a density matrix. Proc. Roman. Acad Sci. 6, 212–218 (2005)

  10. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  11. Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A 40, 14279 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic 2 X 2 separability probabilities. J. Phys. A 45, 095305 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Slater, P.B.: A concise formula for generalized two-qubit Hilbert–Schmidt separability probabilities. J. Phys. A 46, 445302 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fei, J., Joynt, R.: Numerical computations of separability probabilities. arXiv preprint arXiv:1409.1993 (2014)

  15. Życzkowski, K., Sommers, H.-J.: Bures volume of the set of mixed quantum states. J. Phys. A 36, 10115 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A A34, 7111 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discret. Math. 80, 207–211 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Milz, S., Strunz, W.T.: Volumes of conditioned bipartite state spaces. J. Phys. A 48, 035306 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Slater, P.B., Dunkl, C.F.: Formulas for rational-valued separability probabilities of random induced generalized two-qubit states. Adv. Math. Phys. 2015, 621353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)

    Article  ADS  Google Scholar 

  22. Slater, P.B.: arXiv preprint arXiv:1506.08739 (2015)

  23. Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. De Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Życzkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52, 062201 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Krishnamoorthy, K., Peng, J.: Exact properties of a new test and other tests for differences between several binomial proportions. J. Appl. Stat. Sci. 16, 411–423 (2009)

    MathSciNet  Google Scholar 

  29. Vértesi, T., Brunner, N.: Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement. Nat. Commun. 5, 5297 (2014)

    Article  Google Scholar 

  30. Jarvis, P.D.: The mixed two qutrit system: local unitary invariants, entanglement monotones, and the SLOCC group. J. Phys. A Math. Theor. 47, 215302 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 16, 101–117 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Boya, L.J., Dixit, K.: Geometry of density matrix states. Phys. Rev. A 78, 042108 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Makhlin, Y.: Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Inf. Process. 1, 243–252 (2002)

    Article  MathSciNet  Google Scholar 

  34. Khvedelidze, A., Rogojin, I.: On the geometric probability of entangled mixed states. J. Math. Sci. 209, 988–1004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gerdt, V., Khvedelidze, A., Palii, Y.: On the ring of local polynomial invariants for a pair of entangled qubits. J. Math. Sci. 168, 368–378 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Slater, P.B.: arXiv preprint arXiv:1504.04555 (2015)

  37. Brody, D.C., Graefe, E.-M.: Six-dimensional space-time from quaternionic quantum mechanics. Phys. Rev. D 84, 125016 (2011)

    Article  ADS  Google Scholar 

  38. Gerdt, V., Khvedelidze, A., Palii, Y.: Constraints on SU (2) \(\times \) SU (2) invariant polynomials for a pair of entangled qubits. Phys. At. Nucl. 74, 893–900 (2011)

    Article  Google Scholar 

  39. Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices Theory Appl. 4, 1550018 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Aubrun, G., Szarek, S.J., Ye, D.: Entanglement thresholds for random induced states. Commun. Pure Appl. Math. 67, 129–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sommers, H.-J., Życzkowski, K.: Bures volume of the set of mixed quantum states. J. Phys. A 36, 10083–10100 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Altafini, C.: Tensor of coherences parametrization of multiqubit density operators for entanglement characterization. Phys. Rev. A 69, 012311 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Slater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, P.B. Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf Process 15, 3745–3760 (2016). https://doi.org/10.1007/s11128-016-1352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1352-6

Keywords

Navigation