Skip to main content
Log in

On the Geometric Probability of Entangled Mixed States

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The state space of a composite quantum system, the set of density matrices \( \mathfrak{P} \) +, is decomposable into the space of separable states \( \mathfrak{S} \) + and its complement, the space of entangled states. An explicit construction of such a decomposition constitutes the so-called separability problem. If the space \( \mathfrak{P} \) + is endowed with a certain Riemannian metric, then the separability problem admits a measuretheoretic formulation. In particular, one can define the “geometric probability of separability” as the relative volume of the space of separable states \( \mathfrak{S} \) + with respect to the volume of all states. In the present note, using the Peres–Horodecki positive partial transposition criterion, we discuss the measure-theoretic aspects of the separability problem for bipartite systems composed either of two qubits or of a qubit-qutrit pair. Necessary and sufficient conditions for the separability of a two-qubit state are formulated in terms of local SU(2) ⊗ SU(2) invariant polynomials, the determinant of the correlation matrix, and the determinant of the Schlienz–Mahler matrix. Using the projective method of generating random density matrices distributed according to the Hilbert–Schmidt or Bures measure, we calculate the probability of separability (including that of absolute separability) of a two-qubit and qubit-qutrit pair. Bibliograhpy: 47 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, “Die gegenw¨artige Situation in der Quantenmechanik,” Die Naturwissenschaften, 23, 807–812, 823–828, 844–849 (1935).

  2. R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A, 40, 4277–4281 (1989).

    Article  Google Scholar 

  3. W. Thirring, R. A. Bertlmann, P. Köhler, and H. Narnhofer, “Entanglement or separability: the choice of how to factorize the algebra of a density matrix,” Eur. Phys. D, 64, 181–196 (2011).

    Article  Google Scholar 

  4. L. Gurvits, “Classical deterministic complexity of Edmond’s problem and quantum entanglement,” in: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 1019 (electronic), ACM, New York (2003).

  5. L. M. Ioannou, “Computational complexity of the quantum separability problem,” Quantum Inf. Comput., 7, No. 8 (2007), 335–370; arXiv:quant-ph/0603199v7.

    MATH  MathSciNet  Google Scholar 

  6. E. A. Morozova and N. N. Chentsov, “Markov invariant geometry on state manifolds,” Itogi Nauki Tekhniki, 36, 69–102 (1990).

    Google Scholar 

  7. D. Petz and C. Sudar, “Geometries of quantum states,” J. Math. Phys., 37, 2662–2673 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Zyczkowki, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A, 58, 883–892 (1998).

    Article  MathSciNet  Google Scholar 

  9. K. Zyczkowki, “Volume of the set of separable states. II,” Phys. Rev. A, 60, 3496–3507 (1999).

    Article  MathSciNet  Google Scholar 

  10. J. Schlienz and G. Mahler, “Description of entanglement,” Phys. Rev. A, 52, 4396–4404 (1995).

    Article  Google Scholar 

  11. J. von Neumann, “Warscheinlichtkeitstheoretischer Aufbau der Quantemechanik,” Nachrichten Göttingen, 1927, 245–272 (1927).

    MATH  Google Scholar 

  12. L. D. Landau, “Das D¨ampfungsproblem in der Wellenmechanik,” Z. Physik, 45, 430–441 (1927).

    Article  MATH  Google Scholar 

  13. J. Dittmann, “On the Riemannian metrics on the space of density matrices,” Rep. Math. Phys., 36, 309–315 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  14. D. P. Zelobenko, Compact Lie Groups and Their Representations, Amer. Math. Soc., Providence, Rhode Island (1978).

    Google Scholar 

  15. S. M. Deen, P. K. Kabir, and G. Karl, “Positivity constraints on density matrices,” Phys. Rev. D, 4, 1662–1666 (1971).

    Article  Google Scholar 

  16. V. Gerdt, A. Khvedelidze, and Yu. Palii, “Constraints on SU(2) ⊗ SU(2) invariant polynomials for entangled qubit pairs,” Yad. Fiz., 74, No. 6, 919–955 (2001).

    Google Scholar 

  17. L. Chen and D. Z. Dokovic, “Dimensions, lengths and separability in finite-dimensional quantum systems,” J. Math. Phys., 54, 022201 (2013).

    Article  MathSciNet  Google Scholar 

  18. U. Fano, “Description of states in quantum mechanics by density matrix and operator techniques,” Rev. Mod. Phys., 29, 74–93 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett., 77, 1413–1415 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Phys. Lett. A, 223, 1–8 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Horodecki, “Separability criterion and inseparable mixed states with positive partial transpose,” Phys. Lett., 232, 333–339 (1977).

    Article  MathSciNet  Google Scholar 

  22. N. Linden and S. Popescu, “On multi-particle entanglement,” Fortschr. Phys., 46, 567–578 (1998).

    Article  MathSciNet  Google Scholar 

  23. M. Grassl, M. Rötteler, and T. Beth, “Computing local invariants of qubit systems,” Phys. Rev. A, 58, 1833–1859 (1998).

    Article  MathSciNet  Google Scholar 

  24. R. C. King, T. A. Welsh, and P. D. Jarvis, “The mixed two-qubit system and the structure of its ring of local invariants,” J. Phys. A, 40, 10083–10108 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  25. V. Gerdt, Yu. Palii, and A. Khvedelidze, “On the ring of local invariants for a pair of entangled qubits,” J. Math. Sci., 168, 368–378 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  26. V. Gerdt, A. Khvedelidze, D. Mladenov, and Yu. Palii, “SU(6) Casimir invariants and SU(2) ⊗ SU(3) scalars for a mixed qubit-qutrit states,” Zap. Nauchn. Semin. POMI, 387, 102–121 (2001).

    Google Scholar 

  27. C. Quesne, “SU(2)⊗ SU(2) scalars in the enveloping algebra of SU(4),” J. Math. Phys., 17, 1452–1467 (1976).

    Article  MathSciNet  Google Scholar 

  28. M. Kuś and K. Zyczkowski, “Geometry of entangled states,” Phys. Rev. A, 63, 032307 (2001).

    Article  MathSciNet  Google Scholar 

  29. F. Verstraete, K. Audenaert, and B. D. Moor, “Maximally entangled mixed states of two qubits,” Phys. Rev. A, 64, 012316 (2001).

    Article  Google Scholar 

  30. R. Hildebrand, “Positive partial transpose spectra,” Phys. Rev. A, 76, 052325 (2007).

    Article  MathSciNet  Google Scholar 

  31. E. Lubkin, “Entropy of an n-system from its correlation with a k-reservoir,” J. Math. Phys., 19, 1028–1031 (1978).

    Article  MATH  Google Scholar 

  32. S. Lloyd and H. Pagels, “Complexity as thermodynamic depth,” Ann. Phys., 188, 186–213 (1998).

    Article  MathSciNet  Google Scholar 

  33. D. N. Page, “Average entropy of a subsystem,” Phys. Rev. Lett., 71, 1291–1294 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  34. D. J. C. Bures, “An extension of Kakutani’s theorem on infinite product measures to the tensor product of semidefinite ω*-algebras,” Trans. Amer. Math. Soc., 135, 199–212 (1969).

    MATH  MathSciNet  Google Scholar 

  35. S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett., 72, 3439–3443 (1994). 1003

    Article  MATH  MathSciNet  Google Scholar 

  36. H.-J. Sommers and K. Zyczkowski, “Bures volume of the set of mixed quantum states,” J. Phys. A, 36, 10083–10100 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Uhlmann, “Density operators as an arena for differential geometry,” Rep. Math. Phys., 33, 253–263 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Hübner, “Explicit computation of the Bures distance for density matrices,” Phys. Lett. A, 163, 239–242 (1992).

    Article  MathSciNet  Google Scholar 

  39. M. J. Hall, “Random quantum correlations and density operator distributions,” Phys. Lett. A, 242, 123–129 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  40. K. Zyczkowski and H.-J. Sommers, “Hilbert–Schmidt volume of the set of mixed quantum states,” J. Phys. A, 36, 10115–10130 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  41. S. L. Braunstein, “Geometry of quantum inference,” Phys. Lett. A, 219, 169–174 (1966).

    Article  MathSciNet  Google Scholar 

  42. K. Zyczkowski and H.-J. Sommers, “Induced measures in the space of mixed states,” J. Phys. A, 34, 7111–7125 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  43. V. A. Osipov, H.-J. Sommeres, and K. Zyczkowski, “Random Bures mixed states and the distribution of their purity,” J. Phys. A, 43, 055302 (2010).

    Article  MathSciNet  Google Scholar 

  44. J. Ginibre, “Statistical ensembles of complex, quaternion, and real matrices,” J. Math. Phys., 6, 440–339 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  45. P. B. Slater, “Dyson indices and Hilbert–Schmidt separability functions and probabilities,” J. Phys. A, 40, 14279–14308 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  46. P. B. Slater, “Eigenvalues, separability and absolute separability of two-qubit states,” J. Geom. Phys., 59, 17–31 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  47. J. Batle, M. Casas, A. Plastino, and A. R. Plastino, “Metrics, entanglement, and mixedness in the space of two-qubits,” Phys. Lett. A, 353, 161–165 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khvedelidze.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 432, 2015, pp. 274–296.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khvedelidze, A., Rogojin, I. On the Geometric Probability of Entangled Mixed States. J Math Sci 209, 988–1004 (2015). https://doi.org/10.1007/s10958-015-2542-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2542-y

Keywords

Navigation