Skip to main content
Log in

Study of a monogamous entanglement measure for three-qubit quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The entanglement quantification and classification of multipartite quantum states is an important research area in quantum information. In this paper, in terms of the reduced density matrices corresponding to all possible partitions of the entire system, a bounded entanglement measure is constructed for arbitrary-dimensional multipartite quantum states. In particular, for three-qubit quantum systems, we prove that our entanglement measure satisfies the relation of monogamy. Furthermore, we present a necessary condition for characterizing maximally entangled states using our entanglement measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Yan, Y., Gu, W., Li, G.: Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Sci. China Phys. Mech. Astron. 58(5), 50306 (2015)

    Article  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ye, T.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 40301 (2015)

    Article  Google Scholar 

  8. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  9. Zhang, C., Li, C.F., Guo, G.C.: Experimental demonstration of photonic quantum ratchet. Sci. Bull. 60(2), 249 (2015)

    Article  MathSciNet  Google Scholar 

  10. Lu, Y., Feng, G.R., Li, Y.S., Long, G.L.: Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system. Sci. Bull. 60(2), 241 (2015)

    Article  Google Scholar 

  11. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  13. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  Google Scholar 

  14. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  18. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  19. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  22. Yu, C.S., Zhou, L., Song, H.S.: Genuine tripartite entanglement monotone of \(\left(2\otimes 2\otimes n\right)\)-dimensional systems. Phys. Rev. A 77, 022313 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Dan, L., Xin, Z., Gui-Lu, L.: Multiple entropy measures for multi-particle pure quantum state. Commun. Theor. Phys. 54(5), 825 (2010)

    Article  ADS  MATH  Google Scholar 

  24. Cao, Y., Li, H., Long, G.: Entanglement of linear cluster states in terms of averaged entropies. Chin. Sci. Bull. 58(1), 48 (2013)

    Article  Google Scholar 

  25. Hong, Y., Gao, T., Yan, F.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012)

    Article  ADS  Google Scholar 

  26. Gao, T., Yan, F., van Enk, S.: Permutationally invariant part of a density matrix and nonseparability of N-qubit states. Phys. Rev. Lett. 112(18), 180501 (2014)

    Article  ADS  Google Scholar 

  27. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  28. Bai, Y.K., Zhang, N., Ye, M.Y., Wang, Z.D.: Exploring multipartite quantum correlations with the square of quantum discord. Phys. Rev. A 88, 012123 (2013)

    Article  ADS  Google Scholar 

  29. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  30. Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)

    Article  ADS  Google Scholar 

  31. Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)

    Article  ADS  Google Scholar 

  32. Cornelio, M.F.: Multipartite monogamy of the concurrence. Phys. Rev. A 87, 032330 (2013)

    Article  ADS  Google Scholar 

  33. Kim, J.S.: Strong monogamy of quantum entanglement for multiqubit W-class states. Phys. Rev. A 90, 062306 (2014)

    Article  ADS  Google Scholar 

  34. de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)

    Article  ADS  Google Scholar 

  35. Fan, Y.J., Cao, H.X.: Monotonicity of the unified quantum (r, s)-entropy and (r, s)-mutual information. Quant. Inf. Process. 14(12), 4537 (2015). doi:10.1007/s11128-015-1126-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Qin, M., Ren, Z.Z., Zhang, X.: Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model. Quant. Inf. Process. (2015). doi:10.1007/s11128-015-1167-x

  37. Cao, H., Wu, Z.Q., Hu, L.Y., Xu, X.X., Huang, J.H.: An easy measure of quantum correlation. Quant. Inf. Process. 14(11), 4103 (2015). doi:10.1007/s11128-015-1071-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Seevinck, M.P.: Monogamy of correlations versus monogamy of entanglement. Quant. Inf. Process. 9, 273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pawłowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)

    Article  ADS  Google Scholar 

  40. Bennett, C.H.: The monogamy of entanglement, the ambiguity of the past, and the complexity of the present. In: Proceedings of the FQXi 4th International Conference, Vieques Island, Puerto Rico (2014)

  41. Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Brandao, F.G., Harrow, A.W.: Quantum de finetti theorems under local measurements with applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, New York, NY, USA, , pp. 861–870 (2013)

  43. García-Sáez, A., Latorre, J.I.: Renormalization group contraction of tensor networks in three dimensions. Phys. Rev. B 87, 085130 (2013)

    Article  ADS  Google Scholar 

  44. Ma, X., Dakic, B., Naylor, W., Zeilinger, A., Walther, P.: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399 (2011)

    Article  Google Scholar 

  45. Lloyd, S., Preskill, J.: Unitarity of black hole evaporation in final-state projection models. J. High Energy Phys. 08, 1 (2014)

    Google Scholar 

  46. Li, X., Li, D.: Classification of General n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. Phys. Rev. Lett. 108, 180502 (2012)

    Article  ADS  Google Scholar 

  47. Wang, S., Lu, Y., Long, G.L.: Entanglement classification of \(2\times 2\times 2\times d\) quantum systems via the ranks of the multiple coefficient matrices. Phys. Rev. A 87, 062305 (2013)

    Article  ADS  Google Scholar 

  48. Wang, S., Lu, Y., Gao, M., Cui, J., Li, J.: Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix. J. Phys. A Math. Theor. 46, 105303 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Huang, Y., Wen, J., Qiu, D.: Practical full and partial separability criteria for multipartite pure states based on the coefficient matrix method. J. Phys. A Math. Theor. 42, 425306 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  51. Uhlmann, A.: The transition probability in the state space of a \(\ast \)-algebra. Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Dodd, J.L., Nielsen, M.A.: A simple operational interpretation of the fidelity. Phys. Rev. A 66, 044301 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  53. Bruß, D.: Characterizing entanglement. J. Math. Phys. 43, 4237 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ren, X.J., Jiang, W.: Entanglement monogamy inequality in a \(2\otimes 2\otimes 4\) system. Phys. Rev. A 81, 024305 (2010)

    Article  ADS  Google Scholar 

  55. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. A 273, 213 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlian Cui or Gui-Lu Long.

Additional information

This project was supported by the National Natural Science Foundation of China (Grant Nos. 11271217, 11175094 and 91221205) and the National Basic Research Program of China (Grant No. 2015CB921002).

Appendices

Appendix 1

Here we introduce the concept of the coefficient matrix. Every pure state \(\left| \psi \right\rangle \) in system \({\mathcal {H}}^{d_1}\otimes {\mathcal {H}}^{d_2}\otimes \cdots \otimes {\mathcal {H}}^{d_n}\) can be represented as

$$\begin{aligned} \left| \psi \right\rangle =\sum _ {j=0}^{\prod _{k=1}^n d_k -1}\lambda _j\left| t_j\right\rangle , \end{aligned}$$

where, for \(j=0,1,\ldots ,{\prod _{k=1}^n d_k -1}\), coefficients \(\lambda _j\) are complex numbers satisfying

$$\begin{aligned} \sum _ {j=0}^{\prod _{k=1}^n d_k -1}\left| \lambda _j\right| ^2=1 \end{aligned}$$

and \(\left| t_j\right\rangle \) are the basis states in \({\mathcal {H}}\).

We denote the n systems by numbers \(1,2,\ldots ,n\), respectively. Let \(q_i \ (i=1,2,\ldots n)\) be positive integers such that \(0\leqslant q_i \leqslant d_i -1\), then the state \(\left| \psi \right\rangle \) can be rewritten as

$$\begin{aligned} \left| \psi \right\rangle =\sum _ {q_1 =0}^{d_1-1} \sum _{q_2=0}^{d_2-1}\cdots \sum _{q_n=0}^{d_n-1} a_{q_1,q_2,\ldots ,q_n}\left| q_1 q_2\ldots q_n\right\rangle , \end{aligned}$$

which induces the following \(\left( \prod _{i=1}^l d_i\right) \times \left( \prod _{i=l+1}^n d_i\right) \) coefficient matrices whose entries \(a_{q_1 q_2\ldots q_n}\) are arranged according to the subscript \(q_1 q_2\ldots q_n\) in lexicographical ascending order

$$\begin{aligned}&M_{1\cdots l,l+1\ldots n}(\left| \psi \right\rangle )\nonumber \\&\quad =\left( \begin{array}{ccc} a_{\underbrace{0\cdots 0}_l \underbrace{0\cdots 0}_{n-l}} &{} \cdots &{} a_{\underbrace{0\cdots 0}_l \underbrace{d_{l+1} -1\cdots d_n -1}_{n-l}} \\ a_{\underbrace{0\cdots 1}_l \underbrace{0\cdots 0}_{n-l}} &{} \cdots &{} a_{\underbrace{0\cdots 1}_l \underbrace{d_{l+1} -1\cdots {d_n -1}}_{n-l}}\\ \vdots &{} \ddots &{} \vdots \\ a_{\underbrace{d_1-1\cdots d_l-1}_l \underbrace{0\cdots 0}_{n-l}} &{} \cdots &{} a_{\underbrace{d_1 -1\cdots d_l -1}_l \underbrace{d_{l+1} -1\cdots d_{n} -1}_{n-l} }\\ \end{array}\right) \end{aligned}$$

We abbreviate the coefficient matrix \(M_{1\cdots l,l+1\cdots n}(\left| \psi \right\rangle )\) as \(M_{1\cdots l}(\left| \psi \right\rangle )\) by omitting the column subscripts \(l+1\cdots n\). Each realignment of the n particles, described simply as \({s_1s_2\cdots s_ls_{l+1}\cdots s_n}\), a permutation of the set \(\{1, 2, \ldots , n\}\), generates correspondently a \(\left( \prod _{i=1}^{l} d_{s_i}\right) \times \left( \prod _{i=l+1}^n d_{s_i}\right) \) coefficient matrix where l is an arbitrary but fixed positive integer satisfying \(1\leqslant l\leqslant n\),

$$\begin{aligned}&M_{{s_1}\cdots {s_l}}(\left| \psi \right\rangle )\\&\quad =\left( \begin{array}{ccc} a_{\underbrace{0\cdots 0}_l \underbrace{0\cdots 0}_{n-l}} &{} \cdots &{} a_{\underbrace{0\cdots 0}_l \underbrace{d_{s_{l+1}} -1\cdots d_{s_n} -1}_{n-l}} \\ a_{\underbrace{0\cdots 1}_l \underbrace{0\cdots 0}_{n-l}} &{} \cdots &{} a_{\underbrace{0\cdots 1}_l \underbrace{d_{s_{l+1}} -1\cdots {d_{s_n} -1}}_{n-l}}\\ \vdots &{} \ddots &{} \vdots \\ a_{\underbrace{d_{s_1} -1\cdots d_{s_l} -1}_l \underbrace{0\cdots 0}_{n-l}} &{} \cdots &{} a_{\underbrace{d_{s_1} -1\cdots d_{s_l} -1}_l \underbrace{d_{s_{l+1}} -1\cdots d_{s_n} -1}_{n-l} }\\ \end{array}\right) \end{aligned}$$

Appendix 2

This appendix is devoted to prove Theorem 3. In order to prove this theorem, we need the following lemma.

Lemma 1

Let \(S=\left\{ d_1, d_2,\ldots , d_n\right\} \) be a set of n positive numbers with \(d_i\geqslant 1 \ (i=1,2,\ldots n)\). Divide S into any \(k\ (1\leqslant k\leqslant n)\) subsets \(S_j=\left\{ d_1^j,d_2^j,\ldots , d_{n_j}^j\right\} \), where \(1\leqslant j\leqslant k\) and \(\sum _{j=1}^k n_j =n\). Then,

$$\begin{aligned} \frac{\displaystyle \sum \nolimits _{i=1}^n d_i}{n}\leqslant \frac{\displaystyle \sum \nolimits _{j=1}^k \left( \displaystyle \prod \nolimits _{m=1}^{n_j}d_{m}^j\right) }{k}. \end{aligned}$$

Proof

It is sufficient to verify that for any \(k\ (1\leqslant k\leqslant n-1)\) subsets \(S_j=\left\{ d_1^j,d_2^j,\ldots , d_{n_j}^j\right\} \) of the set S with \(1\leqslant j\leqslant k\) and \(\sum _{j=1}^k n_j =n\), there exists \(k+1\) subsets \(T_l=\left\{ c_1^l,c_2^l,\ldots ,c_{h_l}^l\right\} \) of the set S with \(1\leqslant l\leqslant k+1\) and \(\sum _{l=1}^{k+1} h_l =n\), such that

$$\begin{aligned} \frac{\displaystyle \sum \nolimits _{l=1}^{k+1} \left( \displaystyle \prod \nolimits _{m=1}^{h_l}c_{m}^l\right) }{k+1}\leqslant \frac{\displaystyle \sum \nolimits _{j=1}^k \left( \displaystyle \prod \nolimits _{m=1}^{n_j}d_{m}^j\right) }{k}. \end{aligned}$$

For k subsets \(S_j=\left\{ d_1^j,d_2^j,\ldots , d_{n_j}^j\right\} \) with \(1\leqslant j\leqslant k\) and \(\sum _{j=1}^k n_j =n\), without loss of generality we assume \(n_1 \geqslant 2\). Suppose that

$$\begin{aligned} T_1= & {} \left\{ c_1^1\right\} =\left\{ d_1^1\right\} ,\nonumber \\ T_2= & {} \left\{ c_1^2,c_2^2\ldots ,c_{h_2}^2\right\} =\left\{ d_2^1,d_3^1,\ldots ,d_{n_1}^1\right\} ,\nonumber \\ T_l= & {} \left\{ c_1^l,c_2^l,\ldots , c_{h_l}^l\right\} =S_{l-1}=\left\{ d_1^{l-1},d_2^{l-1},\ldots , d_{n_{l-1}}^{l-1}\right\} , \end{aligned}$$

with \(3\leqslant l\leqslant k+1\).

It is apparent from the condition that

$$\begin{aligned}&d_1^1\geqslant 1,\nonumber \\&\prod _{m=2}^{n_1} d_m^1\geqslant 1,\nonumber \\&\sum _{j=2}^k \left( \displaystyle \prod _{m=1}^{n_j}d_{m}^j\right) \geqslant k-1 . \end{aligned}$$

A routine computation gives rise to

$$\begin{aligned}&(k+1)\sum _{j=1}^k \left( \displaystyle \prod _{m=1}^{n_j}d_{m}^j\right) -k\left[ d_1^1 + \displaystyle \prod _{m=2}^{n_1}d_{m}^1+\sum _{j=2}^k \left( \displaystyle \prod _{m=1}^{n_j}d_{m}^j\right) \right] \nonumber \\&\quad = \left( k d_1^1 +d_1^1\right) \left( \prod _{m=2}^{n_1} d_m^1 -1\right) -k\prod _{m=2}^{n_1} d_m^1+\sum _{j=2}^k \left( \displaystyle \prod _{m=1}^{n_j}d_{m}^j\right) +d_1^1 \nonumber \\&\quad \geqslant \left( k d_1^1 +d_1^1\right) \left( \prod _{m=2}^{n_1} d_m^1 -1\right) -k\prod _{m=2}^{n_1} d_m^1 +k-1+ d_1^1 \nonumber \\&\quad = \left( d_1^1 -1\right) +\left[ k\left( d_1^1 -1\right) +d_1^1\right] \left( \prod _{m=2}^{n_1} d_m^1 -1\right) \nonumber \\&\quad \geqslant 0 . \end{aligned}$$

Rearranging the preceding inequality leads to

$$\begin{aligned} \frac{d_1^1 + \displaystyle \prod \nolimits _{m=2}^{n_1}d_{m}^1 +\sum \nolimits _{j=2}^k \left( \displaystyle \prod \nolimits _{m=1}^{n_j}d_{m}^j\right) }{k+1}\leqslant \frac{\displaystyle \sum \nolimits _{j=1}^k \left( \displaystyle \prod \nolimits _{m=1}^{n_j}d_{m}^j\right) }{k} . \end{aligned}$$

Thus we arrive at the conclusion that

$$\begin{aligned} \frac{\displaystyle \sum \nolimits _{l=1}^{k+1} \left( \displaystyle \prod \nolimits _{m=1}^{h_l}c_{m}^l\right) }{k+1}\leqslant \frac{\displaystyle \sum \nolimits _{j=1}^k \left( \displaystyle \prod \nolimits _{m=1}^{n_j}d_{m}^j\right) }{k}. \end{aligned}$$

This completes the proof of Lemma 1. \(\square \)

Now we turn to prove Theorem 3.

Proof of Theorem 3

It can be immediately seen that \({\mathcal {E}}^M(\left| \psi \right\rangle )\geqslant 0\) for any pure state \(\left| \psi \right\rangle \). It remains to show that the upper bound of \({\mathcal {E}}^M(\left| \psi \right\rangle )\) is \(({\widetilde{d}}-1)\sqrt{{{\widetilde{d}}}^n}\). For any \(n_i\)-partite component system \(A= {\mathcal {H}}^{d_1^i}\otimes {\mathcal {H}}^{d_2^i}\otimes \cdots \otimes {\mathcal {H}}^{d_{n_i}^i}\) (\(d_1^i, d_2^i,\ldots , d_{n_i}^i \in \{d_1, d_2,\ldots , d_n\}\)), let \(\rho _\mathrm{A}\) has the eigenvalues \(\lambda _1 , \lambda _2 , \ldots ,\lambda _{\varPi _{m=1}^{n_i} d_{m}^i} .\) Therefore,

$$\begin{aligned} \lambda _1 + \lambda _2 + \cdots +\lambda _{\varPi _{m=1}^{n_i} d_{m}^i} =1 \end{aligned}$$

and

$$\begin{aligned} tr\sqrt{\rho _\mathrm{A}}= & {} \sum _{j=1}^{\varPi _{m=1}^{n_i} d_{m}^i} \sqrt{\lambda _j} \leqslant \sqrt{\left( \displaystyle \prod _{m=1}^{n_i}d_{m}^i\right) \sum _{j=1}^{{\varPi _{m=1}^{n_i} d_{m}^i}} \lambda _j} =\sqrt{\displaystyle \prod _{m=1}^{n_i}d_{m}^i} . \end{aligned}$$

Consequently, we infer that

$$\begin{aligned} \min _{{\mathscr {A}}_k} \left[ \frac{\displaystyle \sum \nolimits _{i=1}^k \left( \hbox {tr}\sqrt{\rho _{\hbox {A}_i}}\right) ^2}{k}-1\right] \leqslant \min _{{\mathscr {A}}_k} \left[ \frac{\displaystyle \sum \nolimits _{i=1}^k \left( \displaystyle \prod \nolimits _{m=1}^{n_i}d_{m}^i\right) }{k}-1\right] . \end{aligned}$$

Meanwhile, Lemma 1 tells us that

$$\begin{aligned} \min _{2\leqslant k\leqslant n}\min _{{\mathscr {A}}_k} \left[ \frac{\displaystyle \sum \nolimits _{i=1}^k \left( \displaystyle \prod \nolimits _{m=1}^{n_i}d_{m}^i\right) }{k}-1\right] =\frac{\sum _{i=1}^n d_i}{n}-1={\widetilde{d}}-1. \end{aligned}$$

Hence,

$$\begin{aligned} \min _{2\leqslant k\leqslant n}\min _{{\mathscr {A}}_k} \sqrt{{{\widetilde{d}}}^n} \left[ \frac{\sum _{i=1}^k \left( tr\sqrt{\rho _{\hbox {A}_i}}\right) ^2}{k}-1\right]\leqslant & {} ({\widetilde{d}}-1)\sqrt{{{\widetilde{d}}}^n}, \end{aligned}$$

which means that \({\mathcal {E}}^M\left( \left| \psi \right\rangle \right) \leqslant ({\widetilde{d}}-1)\sqrt{{{\widetilde{d}}}^n}\). Thus Theorem 3 is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Cui, J., Wang, S. et al. Study of a monogamous entanglement measure for three-qubit quantum systems. Quantum Inf Process 15, 2405–2424 (2016). https://doi.org/10.1007/s11128-016-1285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1285-0

Keywords

Navigation