Skip to main content
Log in

Duality quantum computer and the efficient quantum simulations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11–12):901–924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brandt, H.E., Myers, J.M., Lomonaco Jr., S.J.: Aspects of entangled translucent eavesdropping in quantum cryptography. Phys. Rev. A. 56, 4456 (1997)

    Article  ADS  Google Scholar 

  2. Myers, J.M., Brandt, H.E.: Converting a positive operator-valued measure to a design for a measuring instrument on the laboratory bench. Meas. Sci. Technol. 8, 1222 (1997)

    Article  ADS  Google Scholar 

  3. Brandt, H.E.: Qubit devices and the issue of quantum decoherence. Prog. Quant. Eletron. 22, 257–370 (1999)

    Article  ADS  Google Scholar 

  4. Brandt, H.E.: Positive operator valued measure in quantum information processing. Am. J. Phys. 67, 434–439 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Brandt, H.E.: Secrecy capacity in the four-state protocol of quantum key distribution. J. Math. Phys. 43, 4526–4530 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Brandt, H.E.: Quantum-cryptographic entangling probe. Phys. Rev. A. 71, 042312 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brandt, H.E.: Quantum computational geodesics. J. Mod. Opt. 56, 2112–2117 (2009)

    Article  ADS  MATH  Google Scholar 

  8. Brandt, H.E.: Geodesic derivative in quantum circuit complexity analysis. J. Mod. Opt. 57, 1972–1978 (2010)

    Article  ADS  MATH  Google Scholar 

  9. Brandt, H.E.: Aspects of the Riemannian geometry of quantum computation. Int. J. Mod. Phys. B. 26, 1243004 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Long, G.L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45, 825–844 (2006); Also see arXiv:quant-ph/0512120. It was briefly mentioned in an abstract (5111–53) (Tracking No. FN03-FN02-32) submitted to SPIE conference Fluctuations and Noise in Photonics and Quantum Optics in 18 Oct 2002

  11. Gudder, S.: Mathematical theory of duality quantum computers. Quantum Inf. Process. 6, 37–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Long, G.L.: Mathematical theory of the duality computer in the density matrix formalism. Quantum Inf. Process. 6(1), 49–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zou, X.F., Qiu, D.W., Wu, L.H., Li, L.J., Li, L.Z.: On mathematical theory of the duality computers. Quantum Inf. Process. 8, 37–50 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cui, J.X., Zhou, T., Long, G.L.: Density matrix formalism of duality quantum computer and the solution of zero-wave-function paradox. Quantum Inf. Process. 11, 317–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Long, G.L.: Duality quantum computing and duality quantum information processing. Int. J. Theor. Phys. 50, 1305–1318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Long, G.L., Liu, Y.: Duality computing in quantum computers. Commun. Theor. Phys. 50, 1303–1306 (2008)

    Article  ADS  Google Scholar 

  17. Long, G.L., Liu, Y., Wang, C.: Allowable generalized quantum gates. Commun. Theor. Phys. 51, 65–67 (2009)

    Article  ADS  MATH  Google Scholar 

  18. Cao, H.X., Li, L., Chen, Z.L., Zhang, Y., Guo, Z.H.: Restricted allowable generalized quantum gates. Chin. Sci. Bull. 55, 2122–2125 (2010)

    Article  Google Scholar 

  19. Wang, Y.Q., Du, H.K., Dou, Y.N.: Note on generalized quantum gates and quantum operations. Int. J. Theor. Phys. 47, 2268–2278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gudder, S.: Duality quantum computers and quantum operations. Int. J. Theor. Phys. 47, 268–279 (2008). http://www.math.du.edu/data/preprints/m0611.pdf

  21. Du, H.K., Wang, Y.Q., Xu, J.L.: Applications of the generalized Lders theorem. J. Math. Phys. 49, 013507 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Zhang, Y., Cao, H.X., Li, L.: Realization of allowable qeneralized quantum gates. Sci. China Phys. Mech. Astron. 53, 1878–1883 (2010)

    Article  ADS  Google Scholar 

  23. Long, G.L., Liu, Y.: Duality quantum computing. Front. Comput. Sci. 2, 167–178 (2008)

    Article  MathSciNet  Google Scholar 

  24. Long, G.L., Liu, Y.: General principle of quantum interference and the duality quantum computer. Rep. Prog. Phys. 28, 410–431 (2008). (in Chinese)

    Google Scholar 

  25. Li, C.Y., Li, J.L.: Allowable generalized quantum gates using nonlinear quantum optics. Commun. Theor. Phys. 53, 75–77 (2010)

    Article  ADS  MATH  Google Scholar 

  26. Liu, Y., Zhang, W.H., Zhang, C.L., Long, G.L.: Quantum computation with nonlinear optics. Commun. Theor. Phys. 49, 107–110 (2008)

    Article  ADS  Google Scholar 

  27. Wang, W.Y., Shang, B., Wang, C., Long, G.L.: Prime factorization in the duality computer. Commun. Theor. Phys. 47, 471–473 (2007)

    Article  ADS  Google Scholar 

  28. Chen, Z.L., Cao, H.X.: A note on the extreme points of positive quantum operations. Int. J. Theor. Phys. 48, 1669–1671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hao, L., Liu, D., Long, G.L.: An N/4 fixed-point duality quantum search algorithm. Sci. China Phys. Mech. Astron. 53, 1765–1768 (2010)

    Article  ADS  Google Scholar 

  30. Liu, Y.: Deleting a marked state in quantum database in a duality computing mode. Chin. Sci. Bull. 58, 2927–2931 (2013)

    Article  Google Scholar 

  31. Hao, L., Liu, D., Long, G.L.: An N4 fixed-point duality quantum search algorithm. Sci. China Phys. Mech. Astron. 53, 1765–1768 (2010)

    Article  ADS  Google Scholar 

  32. Cui, J.X., Zhou, T., Long, G.L.: An optimal expression of a Kraus operator as a linear combination of unitary matrices. J. Phys. A Math. Theor. 45, 444011 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Liu, Y., Cui, J.X.: Realization of Kraus operators and POVM measurements using a duality quantum computer. Chin. Sci. Bull. 59, 2298–2301 (2014)

    Article  Google Scholar 

  34. Cao, H.X., Chen, Z.L., Guo, Z.H., et al.: Complex duality quantum computers acting on pure and mixed states. Sci. China Phys. Mech. Astron. 55, 2452–2462 (2012)

    Article  ADS  Google Scholar 

  35. Cao, H.X., Long, G.L., Guo, Z.H., et al.: Mathematical theory of generalized duality quantum computers acting on vector-states. Int. J. Theor. Phys. 52, 1751–1767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, C.Y., Li, J.L.: Allowable generalized quantum gates using nonlinear quantum optics. Commun. Theor. Phys. 53, 75–77 (2010)

    Article  ADS  MATH  Google Scholar 

  37. Wu, Z.Q., Zhang, S.F., Zhu, C.X.: Remarks on generalized quantum gates. Hacettepe J. Math. Stat. 43, 451–460 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, L., Cao, H.X., Meng, H.X.: Generalized duality quantum computers acting on mixed states. Quantum Inf. Process. (2015). doi:10.1007/s11128-015-1112-z

    MathSciNet  MATH  Google Scholar 

  39. Hao, L., Long, G.L.: Experimental implementation of a fixed-point duality quantum search algorithm in the nuclear magnetic resonance quantum system. Sci. China Phys. Mech. Astron. 54, 936–941 (2011)

    Article  ADS  Google Scholar 

  40. Zheng, C., Hao, L., Long, G.L.: Observation of a fast evolution in a parity-time–symmetric system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, 20120053 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Aaronson, S.: Quantum computing, postselection, and probabilistic polynomial-time. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461, 3473–3482 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput. 12(11–12), 901–924 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015)

    Article  ADS  Google Scholar 

  44. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  45. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271–272 (1982)

    Article  ADS  Google Scholar 

  46. Yao, S., Liang, H., Gui-Lu, L.: Why can we copy classical information? Chin. Phys. Lett. 28, 010306 (2011)

    Article  Google Scholar 

  47. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  48. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  49. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  51. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)

    Article  ADS  Google Scholar 

  52. Toyama, F.M., van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quantum Inf. Proc. 12, 1897–1914 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Lloyd, S.: Universal quantum simulators. Science 273, 1073 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Lu, Y., Feng, G.R., Li, Y.S., Long, G.L.: Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system. Sci. Bull. 60, 241–248 (2015)

    Article  Google Scholar 

  55. Sornborger, A.T.: Quantum simulation of tunneling in small systems. Sci. Rep. 2, 597 (2012)

    Article  ADS  Google Scholar 

  56. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by quantum walk. In: Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 59–68 (2003)

  57. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 20–29 (2003)

  58. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    Article  ADS  Google Scholar 

  59. Feng, G.R., Lu, Y., Hao, L., Zhang, F.H., Long, G.L.: Experimental simulation of quantum tunneling in small systems. Sci. Rep. 3, 2232 (2013)

    ADS  Google Scholar 

  60. Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Blanes, S., Casas, F., Ros, J.: Extrapolation of symplectic integrators. Celest. Mech. Dyn. Astr. 75, 149 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, New York, pp. 283–292. ACM Press, New York (2014)

  63. Shor, P.W.: Why haven’t more quantum algorithms been found? J. ACM (JACM) 50, 87–90 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ray, P., Chakrabarti, B.K., Chakrabarti, A.: Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B. 39, 11828 (1989)

    Article  ADS  Google Scholar 

  65. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E. 58, 53555363 (1998)

    Article  Google Scholar 

  66. Das, A., Chakrabarti, B.K.: Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Denchev, V. S., Boixo, S., Isakov, S. V., Ding, N., Babbush, R., Smelyanskiy, V., Neven, H.: What is the computational value of finite range tunneling? arXiv preprint arXiv:1512.02206 (2015)

  68. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Chapple, E.M.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2015CB921002), the National Natural Science Foundation of China Grant Nos. 11175094 and 91221205. Wei is supported by the Fund of Key Laboratory (9140C75010215ZK65001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Lu Long.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 11175094 and 91221205), the National Basic Research Program of China (2015CB921002).

Appendices

Appendix 1: An example of the Childs–Wiebe algorithm in duality quantum computing

Suppose we want to realize the quantum simulation with \(k=1,\ell _q= q \), then

$$\begin{aligned} U(t)=M_{k,k}(t)=\sum _{q=1}^{k+1} C_q S_k(t/\ell _q)^{\ell _q}, \end{aligned}$$
(50)

where \(\ell _q \) \((q\in \lbrace 1,k+1=2\rbrace )\) represent distinct natural numbers and \(\sum _{q=1}^{k+1} C_q=1\), \((C_1,\ldots ,C_{k+1} \in R)\). When \(k=1,\ell _q= q \),

$$\begin{aligned} U(t)=M_{1,1}(t)= \frac{4S_1(t/2)^{2}}{3}-\frac{S_1(t)}{3}+O(t^{5}), \end{aligned}$$

and

$$\begin{aligned} C_1= -\frac{1}{3},\quad C_2= \frac{4}{3}. \end{aligned}$$

For convenient, let \(r=1\), put \( -1 \) into \( S_1(t) \). The duality quantum gate in this case is

$$\begin{aligned} L=\dfrac{3}{{5}}\left( \frac{4}{3}U_{2}+\frac{1}{3}U_{1}\right) , \end{aligned}$$

where \(U_{1}=-S_1(t)\), \(U_{2}=S_1(t/2)^{2} \).

The QWD is simulated by the unitary operation V and the QWC is simulated by unitary operation W respectively,

$$\begin{aligned} V= & {} \sqrt{\dfrac{1}{{5}}}\left( \begin{array}{c@{\quad }ccc} 1 &{} -2 \\ 2 &{} 1 \\ \end{array} \right) , \end{aligned}$$
(51)
$$\begin{aligned} W= & {} \sqrt{\dfrac{1}{{5}}}\left( \begin{array}{c@{\quad }ccc} 1 &{} 2 \\ -2 &{} 1 \\ \end{array} \right) . \end{aligned}$$
(52)

The simulation procedure in the duality quantum computing formalism is illustrated in Fig. 4. Starting from the initial state is \( |0\rangle |\varPsi \rangle \). First, the QWD operation V is performed on the auxiliary qubit, and this transforms the auxiliary qubit through the following transformation,

$$\begin{aligned} |0\rangle \longrightarrow \frac{1}{\sqrt{5}}|0\rangle +\frac{2}{\sqrt{5}}|1\rangle , \end{aligned}$$
Fig. 4
figure 4

Quantum circuit of the Childs–Wiebe algorithm in duality quantum computing when \(k=1,\ell _q= q \). \(|\varPsi \rangle \) denotes the initial state of duality quantum computer, and auxiliary qubit is in the \(|0\rangle \) state. The squares represent unitary operations and the circles represent the state of the controlling qubit. Unitary operations \(U_{1}\), \(U_{2}\) are activated only when the auxiliary qubit is \(|0\rangle \) and \(|1\rangle \), respectively

Then we perform the auxiliary qubits \( |0\rangle \) controlled operation \( U_{1} \) and \( U_{2} \) on the computer. We have

$$\begin{aligned} |0\rangle |\varPsi \rangle \rightarrow \frac{1}{\sqrt{5}}|0\rangle U_{1}|\varPsi \rangle +\frac{2}{\sqrt{5}}|1\rangle U_{2} |\varPsi \rangle \end{aligned}$$
(53)

We perform the QWC operations W on the state \(\frac{1}{\sqrt{5}}|0\rangle +\frac{2}{\sqrt{5}}|1\rangle \). We have the following

$$\begin{aligned} |0\rangle |\varPsi \rangle \rightarrow \frac{1}{5}|0\rangle U_{1}|\varPsi \rangle + \frac{4}{5}|0\rangle U_{2}|\varPsi \rangle + \frac{2}{5}|1\rangle (U_{2}- U_{1})|\varPsi \rangle \end{aligned}$$
(54)

The total process can be described as:

$$\begin{aligned} WV\otimes U(t)|0\rangle |\varPsi \rangle = \frac{3}{5}\left( \frac{1}{3} U_{1} + \frac{4}{3} U_{2}|0\rangle |\varPsi \rangle \right) + \frac{2}{5}|1\rangle (U_{2}- U_{1})|\varPsi \rangle \end{aligned}$$
(55)

So, the probability of the auxiliary state \( |0\rangle \) being detected is \( \Vert \frac{3}{5}|0\rangle (\frac{1}{3} U_{1} + \frac{4}{3} U_{2})|\varPsi \rangle \Vert ^{2}\), which is the successful probability of the algorithm. Considering the simple case that Hamiltonian has two terms, namely \( m=2 \).

$$\begin{aligned} H=\left( \begin{array}{c@{\quad }c} 1 &{} 1 \\ 1 &{} -1 \\ \end{array} \right) ,\quad H_{1}=\left( \begin{array}{c@{\quad }c} 1 &{} 0 \\ 0 &{} -1 \\ \end{array} \right) ,\quad H_{2}=\left( \begin{array}{c@{\quad }c} 0 &{} 1 \\ 1 &{} 0 \\ \end{array} \right) . \end{aligned}$$
(56)

Then \( S_1(t)=\mathrm{e}^{-iH_{1}t}\mathrm{e}^{-2iH_{2}t}\mathrm{e}^{-iH_{1}t}\) and \(S_1(t/2)^{2}=\mathrm{e}^{-iH_{1}t/2}\mathrm{e}^{-iH_{2}t}\mathrm{e}^{-iH_{1}t}\mathrm{e}^{-iH_{2}t}\mathrm{e}^{-iH_{1}t/2}\). In this case, setting \( t=1 \), the probability of implementing U(t) on the target state \( |\varPsi \rangle \) successfully is

$$\begin{aligned} \begin{aligned} 1-P_{f} \!&=\! 1- \frac{4}{25} \Vert \mathrm{e}^{-iH_{1}t/2}\mathrm{e}^{-iH_{2}t}\mathrm{e}^{-iH_{1}t}\mathrm{e}^{-iH_{2}t}\mathrm{e}^{-iH_{1}t/2} \!+\!\mathrm{e}^{-iH_{1}t}\mathrm{e}^{-2iH_{2}t}\mathrm{e}^{-iH_{1}t} |\varPsi \rangle \Vert ^{2} \\&\approx 0.5712, \end{aligned} \end{aligned}$$
(57)

where \(P_{f} \) is the failure probability. If the algorithm fails, one can simply restart from the initial state and repeat the process again. The probability of success after 5 repetitions is \(1-(P_{f})^5\approx 0.98\).

Appendix 2: An example of the BCCKS algorithm in duality quantum computing

Suppose \(K=2\), \(L= 2 \), \( H=(\alpha _{1}H_{1}+\alpha _{2}H_{2}) \), then

$$\begin{aligned} U=1+ \frac{-it}{r}(\alpha _{1}H_{1}+\alpha _{2}H_{2})+\frac{(-it)^{2}}{2r^{2}}(\alpha _{1}H_{1}+\alpha _{2}H_{2})^{2}. \end{aligned}$$

For convenient, let \(r=1\), put \( -i \) into H , ignore the normalized constant. We only care about the first column in the matrice for the QWD operations, thus we have

$$\begin{aligned} V^{F}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 1 &{} X &{}X &{} X\\ 0 &{} X &{} X &{} X\\ \sqrt{(\alpha _{1}+\alpha _{2})t} &{} X &{} X &{} X\\ \frac{(\alpha _{1}+\alpha _{2})t}{\sqrt{2}} &{} X &{} X&{} X\\ \end{array} \right) , \end{aligned}$$
(58)
$$\begin{aligned} V^{S}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \sqrt{\alpha _{1}} &{} -\sqrt{\alpha _{2}}\\ \sqrt{\alpha _{2}}&{} \sqrt{\alpha _{1}} \\ \end{array} \right) , \end{aligned}$$
(59)

where X can be an arbitrary element satisfying the condition that the matrix \( V^{F} \) is unitary. After implementing the first unitary operations \( V^{F} \) in the \( |0\rangle ^{2} \) part of the initial state, we get \(|00\rangle +\sqrt{(\alpha _{1}+\alpha _{2})t}|10\rangle +\frac{(\alpha _{1}+\alpha _{2})t}{\sqrt{2}}|11\rangle \). After implementing the second unitary operations \( V^{S} \) on two \( |0\rangle _{L} \) part of initial state, we get two same states \( \sqrt{\alpha _{1}}|0\rangle +\sqrt{\alpha _{2}}|1\rangle \).

Fig. 5
figure 5

Quantum circuit of the BCCKS algorithm in duality quantum computing when \(K = 2;L = 2 \). In Part a of Fig. 5, \(|\varPsi \rangle \) is the initial state of duality quantum computer and there are 2 numbers of \(|0\rangle \) auxiliary controlling qubits and 2 numbers of 2 level \( |0\rangle \) auxiliary controlling qudits. Unitary operations \(U_{0}\) are activated only when the qubit and qudit holds the respective values indicated in circles. Part b of Fig. 5 is to illustrate that each unitary operation \(U_{0}\) is composed of \( H_{1}\) and \( H_{2}\)

We perform the 2 level auxiliary qudit \( |0\rangle _{2} \) and 2 auxiliary qubits \( |00\rangle \) controlled operations \( U_{j} \) on the computer. We change the state into

$$\begin{aligned}&|00\rangle \left( \sqrt{\alpha _{1}}|0\rangle +\sqrt{\alpha _{2}}|1\rangle \right) ^{2}|\varPsi \rangle \nonumber \\&+\,\sqrt{(\alpha _{1}+\alpha _{2})t}|10\rangle \left( \sqrt{\alpha _{1}}|0\rangle +\sqrt{\alpha _{2}}|1\rangle \right) (\sqrt{\alpha _{1}}H_{1}|0\rangle +\sqrt{\alpha _{2}}H_{2}|1\rangle )|\varPsi \rangle \nonumber \\&+\,\frac{(\alpha _{1}+\alpha _{2})t}{\sqrt{2}}|11\rangle (\sqrt{\alpha _{1}}H_{1}|0\rangle +\sqrt{\alpha _{2}}H_{2}|1\rangle )^{2} |\varPsi \rangle . \end{aligned}$$
(60)

Setting \( W^{F} =(V^{F} )^{\dagger }\), \(W^{S}=( V^{S})^{\dagger } \) and performing the QWC operations \( W^{F} \)and \(W^{S} \) on the state \(|{1^k0^{K-k}}\rangle \) and \(|\ell \rangle \), respectively. We focus our attention on the terms with the L level auxiliary qudit being in state \( |0\rangle _{L} \) and K auxiliary qubits being in state \( |0\rangle ^{K} \). We have the following

$$\begin{aligned} |00\rangle |0\rangle |0\rangle |\varPsi \rangle \rightarrow |00\rangle |0\rangle |0\rangle \left\{ 1+ t(\alpha _{1}H_{1}+\alpha _{2}H_{2})+\frac{t^{2}}{2}(\alpha _{1}H_{1}+\alpha _{2}H_{2})^{2}\right\} |\varPsi \rangle . \end{aligned}$$
(61)

Denoting the state orthogonal to \(|00\rangle |0\rangle |0\rangle |\varPsi \rangle \) as \( |\varPhi \rangle \), the total process can be described as:

$$\begin{aligned}&W^{S}V^{S}\otimes W^{S}V^{S}\otimes W^{F}V^{F}\otimes U|00\rangle |0\rangle |\varPsi \rangle =\sqrt{1-\dfrac{1}{s^{2}}}|\varPhi \rangle \nonumber \\&+\dfrac{1}{s} \left\{ |00\rangle |0\rangle |0\rangle (1+ t(\alpha _{1}H_{1}+\alpha _{2}H_{2})+\frac{t^{2}}{2}(\alpha _{1}H_{1}+\alpha _{2}H_{2})^{2})\right\} |\varPsi \rangle , \end{aligned}$$
(62)

where \( s=1+t(\alpha _{1}+\alpha _{2})/r+t^{2}(\alpha _{1}+\alpha _{2}))^{2}/2r^{2} \). So, the probability of detecting the auxiliary state \(|00\rangle |0\rangle |0\rangle \) is \( P_{s} \), where \(P_{s}=\parallel (1+ t(\alpha _{1}H_{1}+\alpha _{2}H_{2})+\frac{t^{2}}{2}(\alpha _{1}H_{1}+\alpha _{2}H_{2})^{2}) |\varPsi \rangle \parallel ^{2}/{s^{2}}\). Namely the probability of implementing U on the target state \( |\varPsi \rangle \) successfully is \( P_{s} \). If the order of Taylor series K is large enough and \((\alpha _{1}+\alpha _{2})t=\ln 2 \), then \(\sqrt{ P_{s}} \approx 1/s\approx 1/2, \arcsin \beta =\arcsin (1/s)\approx \pi /6\). The error is bounded in the tolerant range. By using the obvious amplitude amplification procedure once, we have \( \sin 3\beta \approx 1 \). Now, the probability of detecting the auxiliary state \( |00\rangle |0\rangle |0\rangle \) is almost \( 100 \%\). Namely, we have deterministically implemented U on the target state \(|\varPsi \rangle \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, SJ., Long, GL. Duality quantum computer and the efficient quantum simulations. Quantum Inf Process 15, 1189–1212 (2016). https://doi.org/10.1007/s11128-016-1263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1263-6

Keywords

Navigation