Skip to main content
Log in

Fidelity between one bipartite quantum state and another undergoing local unitary dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The fidelity and local unitary transformation are two widely useful notions in quantum physics. We study two constrained optimization problems in terms of the maximal and minimal fidelity between two bipartite quantum states undergoing local unitary dynamics. The problems are related to the geometric measure of entanglement and the distillability problem. We show that the problems can be reduced to semidefinite programming optimization problems. We give closed-form formulae of the fidelity when the two states are pure states, or a pure product state and the Werner state. We explain from the point of view of local unitary actions that why the entanglement in Werner states is hard to accessible. For general mixed states, we give upper and lower bounds of the fidelity using tools such as affine fidelity, channels, and relative entropy from information theory. We also investigate the power of local unitaries and the equivalence of the two optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. The vector-operator correspondence \(\text{ vec }\left({\sum _{i,j}X_{ij}|{i\rangle \langle j|}}\right) := \sum _{i,j} X_{ij}|ij\rangle \) is defined, e.g., in Watrous, J.: Theory of Quantum Information. University of Waterloo, Waterloo, 19 (2008). See http://www.cs.uwaterloo.ca/~watrous/quant-info/

  2. Song, W., Chen, L., Zhu, S.L.: Sudden death of distillability in qutrit–qutrit systems. Phys. Rev. A 80, 012331 (2009)

    Article  ADS  Google Scholar 

  3. Sawicki, A., Kuś, M.: Geometry of the local equivalence of states. J. Phys. A Math. Theor. 44(49), 495301 (2011)

    Article  ADS  Google Scholar 

  4. Huckleberry, A., Kuś, M., Sawicki, A.: Bipartite entanglement, spherical actions, and geometry of local unitary orbits. J. Math. Phys. 54, 022202 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  5. Maciazek, T., Oszmaniec, M., Sawicki, A.: How many invariant polynomials are needed to decide local unitary equivalence of qubit states? J. Math. Phys. 54, 092201 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  6. Puchala, Z., Miszczak, J.A., Gawron, P., Dunkl, F., Holbrook, J.A., Życzkowski, K.: Restricted numerical shadow and the geometry of quantum entanglement. J. Phys. A Math. Theor. 41(45), 415309 (2012)

    Article  Google Scholar 

  7. Sawicki, A., Oszmaniec, M., Kuś, M.: Critical sets of the total variance can detect all stochastic local operations and classical communication classes of multiparticle entanglement. Phys. Rev. A 86, 040304 (2012)

    Article  ADS  Google Scholar 

  8. Gour, G., Wallach, N.R.: Classification of multipartite entanglement of all finite dimensionality. Phys. Rev. Lett. 111, 060502 (2011)

    Article  Google Scholar 

  9. Jevtic, S., Jennings, D., Rudolph, T.: Maximally and minimally correlated states attainable within a closed evolving system. Phys. Rev. Lett. 108, 110403 (2012)

    Article  ADS  Google Scholar 

  10. Jevtic, S., Jennings, D., Rudolph, T.: Quantum mutual information along unitary orbits. Phys. Rev. A 85, 052121 (2012)

    Article  ADS  Google Scholar 

  11. Modi, K., Gu, M.: Coherent and incoherent contents of correlations. Int. J. Mod. Phys. B 27, 1345027 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  12. Barz, S., Cronenberg, G., Zeilinger, A., Walther, P.: Heralded generation of entangled photon pairs. Nat. Photonics 4, 553–556 (2010)

    Article  ADS  Google Scholar 

  13. Schindler, P., Barreiro, J.T., Monz, T., Nebendahl, V., Nigg, D., Chwalla, M., Hennrich, M., Blatt, R.: Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011)

    Article  ADS  Google Scholar 

  14. Zhang, L., Fei, S.-M.: A lower bound of quantum conditional mutual information. J. Phys. A Theor. Math. 47, 055301 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  15. Shimony, A.: Degree of entanglement. Ann. N. Y. Acad. Sci. 755, 675–679 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  16. Wei, T.-C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  17. Zhu, H., Chen, L., Hayashi, M.: Additivity and non-additivity of multipartite entanglement measures. New J. Phys. 12, 083002 (2010)

    Article  ADS  Google Scholar 

  18. Chen, L., Aulbach, M., Hajdusek, M.: Comparison of different definitions of the geometric measure of entanglement. Phys. Rev. A 89, 042305 (2014)

    Article  ADS  Google Scholar 

  19. Shimoni, Y., Shapira, D., Biham, O.: Characterization of pure quantum states of multiple qubits using the Groverian entanglement measure. Phys. Rev. A 69, 062303 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  20. Biham, O., Nielsen, M.A., Osborne, T.J.: Entanglement monotone derived from Grover’s algorithm. Phys. Rev. A 65, 062312 (2002)

    Article  ADS  Google Scholar 

  21. Markham, D., Miyake, A., Virmani, S.: Entanglement and local information access for graph states. New J. Phys. 9, 194 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. Zhao, M.-J.: Maximally entangled states and fully entangled fraction. Phys. Rev. A 91, 012310 (2015)

    Article  ADS  Google Scholar 

  23. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  24. Grondalski, J., Etlinger, D.M., James, D.F.V.: The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300, 573–580 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Superactivation of bound entanglement. Phys. Rev. Lett. 90, 107901 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  26. Here \(\sigma ^\Gamma =\sum _{i,j} \langle i|\sigma |j\rangle \otimes |{j}\rangle \langle i|\) [26]. See more about the distillability problem in, DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Thapliyal, A.V.: Evidence for bound entangled states with negative partial transpose. Phys. Rev. A 61, 062312 (2000)

  27. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Chen, L., Djokovic, D.Z.: Distillability and PPT entanglement of low-rank quantum states. J. Phys. A Math. Theor. 44, 285303 (2011)

    Article  ADS  Google Scholar 

  29. Rains, E.M.: A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47(7), 2921–2933 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Distinguishing separable and entangled states. Phys. Rev. Lett. 88, 187904 (2002)

    Article  ADS  Google Scholar 

  31. Brandao, F.G.S.L.: Quantifying entanglement with witness operators. Phys. Rev. A 72, 022310 (2005)

    Article  ADS  Google Scholar 

  32. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Watrous, J.: Simpler semidefinite programs for completely bounded norms. arXiv:1207.5726

  34. Killoran, N.: Entanglement quantification and quantum benchmarking of optical communication devices. PhD thesis, University of Waterloo (2012)

  35. Here \(s_k(X)\). See Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)

  36. Piani, M., Mora, C.: Class of positive-partial-transpose bound entangled states associated with almost any set of pure entangled states. Phys. Rev. A 75, 012305 (2007)

    Article  ADS  Google Scholar 

  37. Johnston, N., Kribs, D.W.: A family of norms with applications in quantum information theory. J. Math. Phys. 51, 082202 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  38. Johnston, N., Kribs, D.W.: A family of norms with applications in quantum information theory II. Quantum Inf. Comput. 11(1–2), 0104–0123 (2011)

    MathSciNet  Google Scholar 

  39. Vianna, R.O., Doherty, A.C.: Distillability of Werner states using entanglement witnesses and robust semidefinite programs. Phys. Rev. A 74, 052306 (2006)

    Article  ADS  Google Scholar 

  40. Coles, P.C., Kaniewski, J., Wehner, S.: Equivalence of waveparticle duality to entropic uncertainty. Nat. Commun. 5, 5814 (2014)

    Article  ADS  Google Scholar 

  41. Rastegin, A.E.: A lower bound on the relative error of mixed-state cloning and related operations. J. Opt. B Quantum Semiclass. Opt. 5, S647 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  42. Fannes, M., Melo, F.D., Roga, W., Życzkowski, K.: Matrices of fidelities for ensembles of quantum states and the Holevo quantity. Quantum Inf. Comput. 12(5–6), 472–489 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. arXiv:1410.0664

  44. Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032106 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  45. Ma, Z.-H., Zhang, F.-L., Chen, J.-L.: Geometric interpretation for the A fidelity and its relation with the Bures fidelity. Phys. Rev. A 78, 064305 (2008)

    Article  ADS  Google Scholar 

  46. Mosonyi, M., Hiai, F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theor. 57, 2474–2487 (2011)

    Article  MathSciNet  Google Scholar 

  47. Zhang, L., Wu, J.: A lower bound of quantum conditional mutual information. J. Phys. A Math. Theor. 47, 415303 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marco Piani for pointing out the last statement in Theorem 2.1 and Ref. [36], as well as a few minor errors in an early version of this paper. LZ is grateful for financial support from National Natural Science Foundation of China (No. 11301124). LC was supported by the NSF of China (Grant No. 11501024), and the Fundamental Research Funds for the Central Universities (Grant Nos. 30426401 and 30458601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Zhang or Lin Chen.

Appendix

Appendix

1.1 Isotropic state

The isotropic state is the convex mixture of a maximally entangled state and the maximally mixed state:

where \(\lambda \in [0,1]\) and \(|\varPsi ^+\rangle =\frac{1}{\sqrt{d}}\sum ^d_{j=1}|jj\rangle \). By Theorem 2.1, we have

$$\begin{aligned} \max _{|u\rangle ,|v\rangle } \left|\langle uv | \varPsi ^+\rangle \right|^2 = \frac{1}{d}~\text {and}~\min _{|u\rangle ,|v\rangle } \left|\langle uv | \Psi ^+\rangle \right|^2 = 0. \end{aligned}$$

Thus,

$$\begin{aligned} \left\langle uv \left| \rho _{\text {iso}}(\lambda ) \right| uv \right\rangle = \frac{1-\lambda }{d^2-1} + \frac{d^2\lambda -1}{d^2-1}\left|\langle uv | \varPsi ^+\rangle \right|^2. \end{aligned}$$
(5.1)

To further characterize the maximum and minimum of this function, we discuss two subcases.

  1. (1)

    If \(\frac{1}{d^2}\leqslant \lambda \leqslant 1\), then \(\max _{|u\rangle ,|v\rangle }\left\langle uv \left| \rho _{\text {iso}}(\lambda ) \right| uv \right\rangle = \frac{d\lambda +1}{d(d+1)}\) and \(\min _{|u\rangle ,|v\rangle }\left\langle uv \left| \rho _{\text {iso}}(\lambda ) \right| uv \right\rangle = \frac{1-\lambda }{d^2-1}\);

  2. (2)

    If \(0\leqslant \lambda <\frac{1}{d^2}\), then \(\min _{|u\rangle ,|v\rangle }\left\langle uv \left| \rho _{\text {iso}}(\lambda ) \right| uv \right\rangle = \frac{d\lambda +1}{d(d+1)}\) and \(\max _{|u\rangle ,|v\rangle }\left\langle uv \left| \rho _{\text {iso}}(\lambda ) \right| uv \right\rangle = \frac{1-\lambda }{d^2-1}\). In summary, we have

    $$\begin{aligned} \mathrm {G}_{\max }(\rho _{\text {iso}}(\lambda ),| uv\rangle \langle uv |) = \max \left( \sqrt{\frac{d\lambda +1}{d(d+1)}},\sqrt{\frac{1-\lambda }{d^2-1}}\right) , \end{aligned}$$
    (5.2)

    and

    $$\begin{aligned} \mathrm {G}_{\min }(\rho _{\text {iso}}(\lambda ),| uv\rangle \langle uv |) = \min \left( \sqrt{\frac{d\lambda +1}{d(d+1)}},\sqrt{\frac{1-\lambda }{d^2-1}}\right) . \end{aligned}$$
    (5.3)

1.2 Proof of Proposition 3.1

For any semidefinite positive matrix X, the following inequality is easily derived via the spectral decomposition of X:

$$\begin{aligned} \sqrt{{\text {rank}}(X) \cdot {{\mathrm{Tr}}}_{}\left( X\right) } \geqslant {{\mathrm{Tr}}}_{}\left( \sqrt{X}\right) \geqslant \sqrt{{{\mathrm{Tr}}}_{}\left( X\right) }, \end{aligned}$$
(5.4)

where the first equality holds if and only if X has identical nonzero eigenvalues, and the second equality holds if and only if X has rank one. Let \(X=A^{1/2}BA^{1/2}\) for any two semidefinite positive matrices AB. Then, (5.4) implies

$$\begin{aligned} \sqrt{{\text {rank}}(A^{1/2}B^{1/2}) \cdot {{\mathrm{Tr}}}_{}(AB)}\geqslant \mathrm {F}(A,B)\geqslant \sqrt{{{\mathrm{Tr}}}_{}(AB)}, \end{aligned}$$
(5.5)

where the first equality holds if and only if \(A^{1/2}BA^{1/2}\) has identical nonzero eigenvalues, and the second equality holds if and only if \(A^{1/2}BA^{1/2}\) has rank one. To prove the first inequality in (3.1), let \(W_1\otimes W_2 = \arg \mathrm {G}_{\max }(\rho ,\sigma )\). We have

$$\begin{aligned}&\mathrm {G}_{\max }(\rho ,\sigma )^2 + (d_1d_2-1)\mathrm {G}_{\min }(\rho ,\sigma ')^2 \nonumber \\&\quad \leqslant \mathrm {F}(\rho ,(W_1\otimes W_2)\sigma (W_1\otimes W_2)^\dagger )^2\nonumber \\&\qquad +\, (d_1d_2-1) \mathrm {F}(\rho ,(W_1\otimes W_2)\sigma '(W_1\otimes W_2)^\dagger )^2 \nonumber \\&\quad \leqslant {\text {rank}}(\rho ^{1/2} (W_1\otimes W_2)\sigma ^{1/2}(W_1\otimes W_2)^\dagger )\nonumber \\&\qquad \times {{\mathrm{Tr}}}_{}\left( \rho (W_1\otimes W_2)\sigma (W_1\otimes W_2)^\dagger \right) \nonumber \\&\qquad + {\text {rank}}(\rho ^{1/2}(W_1\otimes W_2)(\sigma ')^{1/2}(W_1\otimes W_2)^\dagger )(d_1d_2-1)\nonumber \\&\qquad \times {{\mathrm{Tr}}}_{}\left( \rho (W_1\otimes W_2)\sigma '(W_1\otimes W_2)^\dagger \right) \nonumber \\&\quad \leqslant {\text {rank}}(\rho ) \left[ {{\mathrm{Tr}}}_{}\left( \rho (W_1\otimes W_2)\sigma (W_1\otimes W_2)^\dagger \right) \right. \nonumber \\&\left. \qquad +\, (d_1d_2-1) {{\mathrm{Tr}}}_{}(\rho (W_1\otimes W_2)\sigma '(W_1\otimes W_2)^\dagger )\right] \nonumber \\&\quad ={\text {rank}}(\rho ), \end{aligned}$$
(5.6)

where the first inequality follows from the definition of \(\mathrm {G}_{\max }\) and \(\mathrm {G}_{\min }\), and its equality is equivalent to condition (i). The second inequality in (5.6) follows from the first inequality in (5.5) by assuming \(A=\rho \), \(B=(W_1\otimes W_2)\sigma (W_1\otimes W_2)^\dagger \) and \((W_1\otimes W_2)\sigma '(W_1\otimes W_2)^\dagger \), respectively. Its equality is equivalent to condition (i) by the first inequality in (5.5). The third inequality in (5.6) follows from the fact \({\text {rank}}(A) \geqslant {\text {rank}}(A^{1/2} B^{1/2})\). Its equality holds if condition (iii) holds. So we have proved the first inequality and the three conditions by which the equality holds in (3.1).

To prove the second inequality in (3.1), let \(V_1\otimes V_2 = \arg \mathrm {G}_{\min }(\rho ,\sigma ')\). We have

$$\begin{aligned}&\mathrm {G}_{\max }(\rho ,\sigma )^2 + (d_1d_2-1)\mathrm {G}_{\min }(\rho ,\sigma ')^2 \nonumber \\&\quad \geqslant \mathrm {F}(\rho ,(V_1\otimes V_2)\sigma (V_1\otimes V_2)^\dagger )^2 + (d_1d_2-1)\mathrm {F}(\rho ,(V_1\otimes V_2)\sigma '(V_1\otimes V_2)^\dagger )^2 \nonumber \\&\quad \geqslant {{\mathrm{Tr}}}_{}(\rho (V_1\otimes V_2)\sigma (V_1\otimes V_2)^\dagger ) + (d_1d_2-1) {{\mathrm{Tr}}}_{}(\rho (V_1\otimes V_2)\sigma '(V_1\otimes V_2)^\dagger ) \nonumber \\&\quad =1, \end{aligned}$$
(5.7)

where the second inequality follows from (5.5) by assuming \(A=\rho \), \(B=(V_1\otimes V_2)\sigma (V_1\otimes V_2)^\dagger \) and \((V_1\otimes V_2)\sigma '(V_1\otimes V_2)^\dagger \), respectively. So we have proved the second inequality in (3.1). The equality in (3.1) holds if and only if the first two equalities in (5.7) hold. The first equality is equivalent to condition (iv) by the definition of \(\mathrm {G}_{\max }\) and \(\mathrm {G}_{\min }\), and the second equality is equivalent to conditions (v) and (vi) by (5.5). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, L. & Bu, K. Fidelity between one bipartite quantum state and another undergoing local unitary dynamics. Quantum Inf Process 14, 4715–4730 (2015). https://doi.org/10.1007/s11128-015-1117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1117-7

Keywords

Navigation