Skip to main content
Log in

The classical-quantum multiple access channel with conferencing encoders and with common messages

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We prove coding theorems for two scenarios of cooperating encoders for the multiple access channel with two classical inputs and one quantum output. In the first scenario (ccq-MAC with common messages), the two senders each have their private messages, but would also like to transmit common messages. In the second scenario (ccq-MAC with conferencing encoders), each sender has its own set of messages, but they are allowed to use a limited amount of noiseless classical communication among each other prior to encoding their messages. This conferencing protocol may depend on each individual message they intend to send. The two scenarios are related to each other not only in spirit—the existence of near-optimal codes for the ccq-MAC with common messages is used for proving the existence of near-optimal codes for the ccq-MAC with conferencing encoders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede, R.: Multiway communication channels. In: Proceedings of 2nd International Symposium on Information Theory, Thakadsor, Armenian SSR, Akademiai Kiado, Budapest, pp. 2352 (1971)

  2. Ahlswede, R., Körner, J.: Source coding with side information and a converse for degraded broadcast channels. IEEE Trans. Inf. Theory 21(6), 629–637 (1975)

    Article  MATH  Google Scholar 

  3. Ahlswede, R.: Elimination of correlation in random codes for arbitrarily varying channels. Z. Wahrscheinlichkeitstheorie verw. Gebiete 44, 159–175 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bross, S., Lapidoth, A., Wigger, M.: The Gaussian MAC with conferencing encoders. In: Proceedings of IEEE International Symposium on Information Theory (ISIT 2008), pp. 2702–2706 (2008)

  5. Boche, H., Nötzel, J.: Cooperation for the classical-quantum multiple access channel. In: Proceedings of IEEE International Symposium on Information Theory (ISIT 2013) Hawaii, USA (2013)

  6. Cover, T., Gamal, A.E., Salehi, M.: Multiple access channels with arbitrarily correlated sources. IEEE Trans. Inf. Theroy 26(6), 648–657 (1980)

    Article  MATH  Google Scholar 

  7. Do, H.T., Oechtering, T.J., Skoglund, M.: The Gaussian Z-interference channel with rate-constrained conferencing decoders. In: Proceedings of IEEE International Conference On Communications (ICC), Cape Town, South Africa (2010)

  8. Fawzi, O., Hayden, P., Savov, I., Sen, P., Wilde, M.M.: Classical communication over a quantum interference channel. IEEE Trans. Inf. Theory 58(6), 3670–3691 (2012)

    Article  MathSciNet  Google Scholar 

  9. Gacs, P., Körner, J.: Common information is far less than mutual information. Probl. Control Inf. Theory 2(2), 149–162 (1973)

    MATH  Google Scholar 

  10. Liao, H.H.-J.: Multiple Access Channels, Ph.D. dissertation, University of Hawaii, Honolulu, HI (1972)

  11. Maric, I., Yates, R., Kramer, G.: Capacity of interference channels with partial transmitter cooperation. IEEE Trans. Inf. Theory 53(10), 3536–3548 (2007)

    Article  MathSciNet  Google Scholar 

  12. Ng, C.T.K., Maric, I., Goldsmith, A.J., Shamai,(Shitz) S., Yates, R.D.: Iterative and one-shot conferencing in relay channels. In: Proceedings of IEEE Information Theory Workshop, Punta del Este, Uruguay (2006)

  13. Sen, P.: Achieving the Han-Kobayashi inner bound for the quantum interference channel. In: 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 736–740 (2012)

  14. Shannon, C.E.: Two-way communication channels. In: Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, vol. 1, pp. 611–644 (1961)

  15. Simeone, O., Gunduz, D., Poor, H.V., Goldsmith, A.J., Shamai, S.: Compound multiple-access channels with partial cooperation. IEEE Trans. Inf. Theory 55(6), 2425–2441 (2009)

    Article  MathSciNet  Google Scholar 

  16. Slepian, D., Wolf, J.K.: A coding theorem for multiple access channels with correlated sources. Bell Syst. Tech. J. 52(7), 1037–1076 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wiese, M., Boche, H., Bjelakovic, I., Jungnickel, V.: The compound multiple access channel with partially cooperating encoders. IEEE Trans. Inf. Theory 57(5), 3045–3066 (2011)

    Article  MathSciNet  Google Scholar 

  18. Wiese, M., Boche, H.: The arbitrarily varying multiple-access channel with conferencing encoders. IEEE Trans. Inf. Theory 59(3), 1405–1416 (2013)

    Article  MathSciNet  Google Scholar 

  19. Wigger, M.A.: Cooperation on the Multiple-Access Channel. PhD thesis, ETH Zürich, Switzerland (2008)

  20. Wilde, M.M.: Private email to I. Savov, January 2012, brought to our attention August 2014.

  21. Wilde, M.M., Savov, I.: Joint source-channel coding for a quantum multiple access channel. J. Phys. A Math. Theor. 45(43), 435302 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  22. Willems, F.M.J.: The discrete memoryless multiple access channel with partially cooperating encoders. IEEE Trans. Inf. Theory 29(3), 441–445 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Winter, A.: Coding Theorems of Quantum Information Theory, PhD thesis, Universität Bielefeld, Germany (1999)

  24. Winter, A.: The capacity of the quantum multiple access channel. IEEE Trans. Inf. Theory 47(7), 3059–3065 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank an anonymous referee for pointing out to us the connection of our work to [21]. This work was supported by the DFG via Grant BO 1734/20-1 (H.B.) and by the BMBF via Grant 01BQ1050 (H.B., J.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nötzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boche, H., Nötzel, J. The classical-quantum multiple access channel with conferencing encoders and with common messages. Quantum Inf Process 13, 2595–2617 (2014). https://doi.org/10.1007/s11128-014-0814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0814-y

Keywords

Navigation