Skip to main content
Log in

Universal random codes: capacity regions of the compound quantum multiple-access channel with one classical and one quantum sender

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider the compound memoryless quantum multiple-access channel (QMAC) with two sending terminals. In this model, the transmission is governed by the memoryless extensions of a completely positive and trace preserving map which can be any element of a prescribed set of possible maps. We study a communication scenario, where one of the senders aims for transmission of classical messages, while the other sender sends quantum information. Combining powerful universal random coding results for classical and quantum information transmission over point-to-point channels, we establish universal codes for the mentioned two-sender task. Conversely, we prove that the two-dimensional rate region achievable with these codes is optimal. In consequence, we obtain a multi-letter characterization of the capacity region of each compound QMAC for the considered transmission task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede, R., Wolfowitz, J.: The structure of capacity functions for compound channels. In: Proceedings if the International Symposium on Probability and Information Theory at McMaster University, pp. 12–54 (1969). Z. f. Wahrscheinlichkeitstheorie verw. Gebiete 44, 159–175 (1978)

  2. Ahlswede, R.: Elimination of correlation in random codes for arbitrarily varying channels. Z. f. Wahrscheinlichkeitstheorie verw. Gebiete 44, 159–175 (1978)

    Article  MathSciNet  Google Scholar 

  3. Ahlswede, R.: Multi-way communication channels. In: Proceedings of the 2nd International Symposium on Information Theory, pp. 23–52 (1973)

  4. Ahlswede, R., Cai, N.: Arbitrarily varying multiple-access channels, part I - Ericson’s symmetrizability is adequate, Gubner’s conjecture is true. IEEE Trans. Inf. Theory 45, 742–749 (1999)

    Article  Google Scholar 

  5. Ahlswede, R.: Transmitting and Gaining Data–Rudolf Ahlswede’s Lectures on Information Theory 2. Springer, New York (2015)

    MATH  Google Scholar 

  6. Alicki, R., Fannes, M.: Continuity of quantum conditional information. J. Phys. A. Math. Gen. 37, L55–L57 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48, 2637–2655 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bjelaković, I., Boche, H.: Classical capacities of compound and averaged quantum channels. IEEE Trans. Inf. Theory 55, 3360–3374 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bjelaković, I., Boche, H., Janßen, G., Nötzel, J.: Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities. Information Theory, Combinatorics, and Search Theory. In: Memory of Rudolf Ahlswede, Aydinian, H., Cicalese, F., Deppe, C. (eds.) LNCS, vol. 7777, pp. 247–283. Springer, New York (2013)

    Chapter  Google Scholar 

  10. Bjelakovic, I., Boche, H., Nötzel, J.: Quantum capacity of a class of compound channels. Phys. Rev. A 78, 042331 (2008)

    Article  ADS  Google Scholar 

  11. Bjelakovic, I., Boche, H., Nötzel, J.: Entanglement transmission and generation under channel uncertainty: universal quantum channel coding. Commun. Math. Phys. 292, 55–97 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bjelakovic, I., Boche, H., Sommerfeld, J.: Secrecy results for compound wiretap channels. Probl. Inf. Trans. 49, 73–98 (2013)

    Article  MathSciNet  Google Scholar 

  13. Boche, H., Cai, M., Deppe, C.: Secrecy capacities of compound quantum wiretap channels and applications. Phys. Rev. A 89, 052320 (2014)

    Article  ADS  Google Scholar 

  14. Boche, H., Janßen, G., Saeedinaeeni, S.: Simultaneous transmission of classical and quantum information under channel uncertainty and jamming attacks. J. Math. Phys. 60, 022204 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Csiszár, I., Körner, J.: Information Theory -Coding Theorems for Discrete Memoryless Systems, 2nd edn. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  16. Datta, N., Hsieh, M.-H.: Universal coding for transmission of private information. J. Math. Phys. 51, 122202 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256, 287–303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Devetak, I.: The private classical capacity and the quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44–55 (2005)

    Article  MathSciNet  Google Scholar 

  19. Dueck, G.: Maximal error regions are strictly smaller than average error regions for multi-user channels. Probl. Control Inf. Theory 7, 11–19 (1978)

    MATH  Google Scholar 

  20. Dynes, J.F., et al.: Ultra-high bandwidth quantum secured data transmission. Sci. Rep. 6, 35149 (2016)

    Article  ADS  Google Scholar 

  21. Gross, D., Audenaert, K., Eisert, J.: Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, 052105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hayashi, M.: Universal coding for classical-quantum channel. Commun. Math. Phys. 289, 1087–1098 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hayashi, M., Nagaoka, H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inf. Theory 49, 1753–1768 (2003)

    Article  MathSciNet  Google Scholar 

  24. Hayden, P., Horodecki, M., Winter, A., Yard, J.: A decoupling approach to the quantum capacity. Open Syst. Inf. Dyn. 15, 7–19 (2008)

    Article  MathSciNet  Google Scholar 

  25. Hirche, C., Morgan, C., Wilde, M.M.: Polar codes in network quantum information theory. IEEE Trans. Inf. Theory 62(2), 915–924 (2016)

    Article  MathSciNet  Google Scholar 

  26. Holevo, A.: The capacity of quantum communication channel with general signal states. IEEE Trans. Inf. Theory 44, 269–272 (1998)

    Article  Google Scholar 

  27. Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Commun. Math. Phys. 269, 107–136 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hsieh, M.-H., Wilde, M.M.: Entanglement-assisted communication of classical and quantum information. IEEE Trans. Inf. Theory 56, 4682–4704 (2010)

    Article  MathSciNet  Google Scholar 

  29. Jahn, J.-H.: Coding of arbitrarily varying multiuser channels. IEEE Trans. Inf. Theory 27, 212–226 (1981)

    Article  MathSciNet  Google Scholar 

  30. Liao, H.J.: Multiple Access Channels. University of Hawaii, Honolulu, Dept. of Electrical Engineering, Phd. Thesis (1972)

  31. Klesse, R.: Approximate quantum error correction, random codes, and quantum channel capacity. Phys. Rev. A 75, 062315 (2007)

    Article  ADS  Google Scholar 

  32. Mosonyi, M., Datta, N.: Generalized relative entropies and the capacity of classical-quantum channels. J. Math. Phys. 50, 072104 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Mosonyi, M.: Coding theorems for compound problems via quantum Rényi divergences. IEEE Trans. Inf. Theory 61, 2997–3012 (2015)

    Article  MathSciNet  Google Scholar 

  34. Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channel. Phys. Rev. A 56, 131–138 (1997)

    Article  ADS  Google Scholar 

  35. Winter, A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45, 2481–2485 (1999)

    Article  MathSciNet  Google Scholar 

  36. Winter, A.: The capacity of the quantum multiple-acess channel. IEEE Trans. Inf. Theory 47, 3059–3065 (2001)

    Article  Google Scholar 

  37. Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347, 291–313 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. Yard, J., Devetak, I., Hayden, P.: Capacity theorems for quantum multiple access channels. In: Proceedings of International Symposium on Information Theory, pp. 884–888 (2005)

  39. Yard, J., Devetak, I., Hayden, P.: Capacity theorems for quantum multiple-access channels: classical–quantum and quantum–quantum capacity regions. IEEE Trans. Inf. Theory 54, 3091–3113 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisbert Janßen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Boche is partly supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC-2111 390814868 and the Gottfried Wilhelm Leibniz Prize of the DFG under Grant BO 1734/20-1. G. Janßen is partly supported by the Bundesministerium für Bildung und Forschung (BMBF, German Federal Ministry of Education and Research) project QuaDiQua under grant 16KIS0948. S. Saeedinaeeni is partly supported by the BMBF project Q.Link.X under grant16KIS0858. Parts of the present work were presented at the VDETUM QuaDiQua project meeting at the Walter Schottky Institute, TU Munich (December 2018).

Appendices

Auxiliary results

For the convenience of the reader, some auxiliary standard results used in the text are collected.

Lemma 3

(Gentle measurement lemma [35]) Let \(\rho \in \mathcal {S}(\mathcal {K})\), \(E \in \mathcal {L}(\mathcal {H})\), \(0 \le E \le \mathbb {1}_{\mathcal {H}}\). It holds

$$\begin{aligned} \Vert \sqrt{E}\rho \sqrt{E} - \rho \Vert _1 \ \le \ 3 \cdot \sqrt{1 - \mathrm {tr}E \rho }. \end{aligned}$$

Lemma 4

[39] Let \(\Psi , \rho , \sigma \in \mathcal {S}(\mathcal {K})\) be states, where \(\Psi \) is pure. Then

$$\begin{aligned} F(\Psi , \rho ) \ \ge \ F(\Psi , \sigma ) - \tfrac{1}{2}\Vert \rho - \sigma \Vert _1 \end{aligned}$$

Lemma 5

[39] Let \(\Psi \in \mathcal {S}(\mathcal {K}_A), \rho \in \mathcal {S}(\mathcal {K}_B), \sigma \in \mathcal {S}(\mathcal {K}_{A} \otimes \mathcal {K}_B)\) Then

$$\begin{aligned} F(\Psi \otimes \rho , \sigma ) \ \ge \ 1 - \Vert \rho - \sigma _B\Vert _1 - 3\left( 1 - F(\Psi , \sigma _A)\right) . \end{aligned}$$

Lemma 6

[6, 37] Let \(\rho , \sigma \in \mathcal {S}(\mathcal {K}_{A} \otimes \mathcal {K}_B)\), \(\Vert \rho - \sigma \Vert _1 \le \epsilon \le 1\). Then

$$\begin{aligned} |I(A\rangle B, \rho ) - I(A \rangle B, \sigma )| \ \le \ 6 \epsilon \log \dim \mathcal {K}_A + (2 + 4 \epsilon ) h(2 \epsilon / 1 + 2 \epsilon ), \end{aligned}$$
(57)

where \(h(x) = - x \log x - (1-x) \log (1-x)\), \(s \in (0,1)\) is the binary Shannon entropy.

Convexity of the capacity formula

In this appendix, we show that the functional expressions in Theorem 3 do not need further convexification. Following the arguments given in [39] for the case of a perfectly known QMAC, we show that for given \(\mathfrak {M}\subset \mathcal {C}(\mathcal {H}_A \otimes \mathcal {H}_B, \mathcal {H}_C)\), the set

$$\begin{aligned} \hat{C}_1(\mathfrak {M}) := \bigcup _{l=1}^\infty \bigcup _{p,V,\Psi } \bigcap _{\mathcal {M}\in \mathfrak {M}} \hat{C}^{(1)}(\mathfrak {M}^{\otimes l}, p, V, \Psi ), \end{aligned}$$
(58)

is convex, i.e. we show

Lemma 7

Let \(\mathfrak {M}\in \mathcal {C}(\mathcal {H}_A \otimes \mathcal {H}_B, \mathcal {H}_C)\). It holds

$$\begin{aligned} \mathrm {conv}(\hat{C}_1(\mathfrak {M})) = \hat{C}_1(\mathfrak {M}). \end{aligned}$$
(59)

Proof

We have to show that for each \(\lambda \in (0,1)\), and any two rate pairs \((R_1^{(i)},R_2^{(i)}) \in \hat{C}_1(\mathfrak {M})\), \(i = 1,2\), the their convex combination \((\overline{R}_1, \overline{R}_2)\) with \(\overline{R}_j^{(i)} = \lambda R_j^{(1)} + (1- \lambda ) R_j^{(2)}\) for \(i = 1,2\) is also a member of \(\hat{C}_1(\mathfrak {M})\). Assume

$$\begin{aligned} (R_1^{(i)}, R_2^{(i)}) \in \bigcap _{\mathcal {M}\in \mathfrak {M}} \hat{C}^{(1)}(\mathcal {M}^{\otimes l_i}, p_i, V_i, \Psi _i) \end{aligned}$$
(60)

for some \(l_i, p_i, V_i, \Psi _i\), i.e. with effective states

$$\begin{aligned} \omega _i(\mathcal {M}) := \omega (\mathcal {M}^{\otimes l_i}, p_i, V_i, \Psi _i)&(i \in {1,2}, \mathcal {M}\in \mathfrak {M}) \end{aligned}$$
(61)

according to (3), the equations

$$\begin{aligned} l_i \cdot R_1^{(i)}&\le \underset{\mathcal {M}\in \mathfrak {M}}{\inf } \ I(X_i; C^{l_i}, \omega _i) \ \text {and} \nonumber \\ l_i \cdot R_2^{(i)}&\le \underset{\mathcal {M}\in \mathfrak {M}}{\inf } \ I(B^{l_i}\rangle C^{l_iX_i}, \omega _i) \end{aligned}$$
(62)

are fulfilled. Fix \(\delta > 0\), and let \(k,n \in \mathbb {N}\), \(0< k < n\) such that

$$\begin{aligned} |\lambda - \tfrac{k}{n}| \ < \frac{\delta }{R_1^{(1)} + R_2^{(1)} + R_1^{(2)} + R_2^{(2)}}. \end{aligned}$$
(63)

Set \(t_1 := k l_2\), \(t_2 := (n-k) l_1\). With

$$\begin{aligned} \tilde{\omega }(\mathcal {M}) \ := \ \omega _1(\mathcal {M})^{\otimes t_1} \otimes \omega _2(\mathcal {M})^{\otimes t_2}, \end{aligned}$$
(64)

which is unitarily equivalent to

$$\begin{aligned} \omega (\mathcal {M}^{\otimes nl_1l_2}, p_1^{t_2}\otimes p_2^{t_2}, V_1^{\otimes t_1} \otimes V_2^{\otimes t_2}, \Psi _1^{\otimes t_1} \otimes \Psi _2^{\otimes t_2}), \end{aligned}$$
(65)

we have

$$\begin{aligned} I(X_1^{t_1}X_2^{t_2}; C^{l_1l_2n}, \tilde{\omega }(\mathcal {M}))&\ = \ I(X_1^{t_1}X_2^{t_2}; C^{l_1l_2n}, \omega _1(\mathcal {M})^{\otimes t_1} \otimes \omega _2(\mathcal {M})^{\otimes t_2}) \end{aligned}$$
(66)
$$\begin{aligned}&\ = \ I(X_1^{t_1}; C^{l_1t_1}, \omega _1(\mathcal {M})^{\otimes t_1}) + I(X_2^{t_2}; C^{l_2t_2}, \omega _2(\mathcal {M})^{\otimes t_2}) \end{aligned}$$
(67)
$$\begin{aligned}&\ = \ t_1 \cdot I(X_1; C^{l_1}, \omega _1(\mathcal {M})) + t_2 \cdot I(X_2; C^{l_2}, \omega _2(\mathcal {M})) \end{aligned}$$
(68)
$$\begin{aligned}&\ \ge t_1 l_1 R_1^{(1)} + t_2 l_2 R_1^{(2)} \end{aligned}$$
(69)
$$\begin{aligned}&\ \ge k l_1 l_2 R_1^{(1)} + (n-k) l_1 l_2 R_1^{(2)}. \end{aligned}$$
(70)

where the second and third equalities above are by additivity of the quantum mutual information evaluated on product states, and the inequality is by (62). Consequently, we have

$$\begin{aligned} \frac{1}{l_1 l_2 n} \underset{\mathcal {M}\in \mathfrak {M}}{\inf } I(X_1^{t_1}X_2^{t_2}; C^{l_1l_2n}, \tilde{\omega }(\mathcal {M}))&\ \ge \ \frac{k}{n} R_1^{(1)} + (1 - \frac{k}{n} R_1^{(2)} \end{aligned}$$
(71)
$$\begin{aligned}&\ \ge \ \lambda R_1^{(1)} + (1-\lambda ) R_1^{(2)} - \delta . \end{aligned}$$
(72)

In a similar manner, also the inequality

$$\begin{aligned} \frac{1}{l_1 l_2 n} \underset{\mathcal {M}\in \mathfrak {M}}{\inf } I(B^{n l_1 l_2} \rangle C^{n l_1 l_2}X_1^{t_1}X_2^{t_2}, \tilde{\omega }(\mathcal {M}))&\ \ge \ \lambda R_2^{(1)} + (1-\lambda ) R_2^{(2)} - \delta \end{aligned}$$
(73)

is verified. By (72) and (73),

$$\begin{aligned}&(\overline{R}_1, \overline{R}_2) \ \in \ \left( \bigcap _{\mathcal {M}\in \mathfrak {M}} \frac{1}{l_1l_2} \hat{C}^{(1)}(\mathcal {M}^{l_1l_2n}, p_1^{t_1}\otimes p_2^{t_2}, V_1^{\otimes t_1} \otimes V_2^{\otimes t_2}, \Psi _1^{\otimes t_1} \otimes \Psi _2^{\otimes t_2})\right) _\delta \nonumber \\&\qquad \qquad \subset \ \hat{C}_1(\mathfrak {M})_\delta . \end{aligned}$$
(74)

Since \(\delta > 0\) can be chosen arbitrarily, the claim of the lemma follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boche, H., Janßen, G. & Saeedinaeeni, S. Universal random codes: capacity regions of the compound quantum multiple-access channel with one classical and one quantum sender. Quantum Inf Process 18, 246 (2019). https://doi.org/10.1007/s11128-019-2358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2358-7

Keywords

Navigation