Skip to main content
Log in

Effectiveness of depolarizing noise in causing sudden death of entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Continuing on the recent observation that sudden death of entanglement can occur even when a single qubit of a 2-qubit state is exposed to noisy environment (Yashodamma and Sudha in Results Phys 3:41–45, 2013), we examine the local action of a noise on bipartite qubit–qutrit and qutrit–qutrit systems. We show that depolarizing noise causes sudden death of entanglement in both qubit–qutrit and qutrit–qutrit systems even when it acts only on one part of the system. While generalized amplitude damping noise also causes finite-time disentanglement in qubit–qutrit states, the entanglement sudden death occurs much faster due to depolarizing noise. This result strengthens the observation (Yashodamma and Sudha in Results Phys 3:41–45, 2013) that depolarizing noise is more effective than other noise models in causing sudden death of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The states that are left invariant by the action of GAD on a single qubit are of the form \(\mathrm{{diag}}(p,\,1-p)\) and when \(p=1/2\), GAD keeps the maximally mixed state \(I_2/2\) invariant [1].

  2. In Ref. [20], it has been shown that dephasing noise acting either on the qubit or the qutrit of the one-parameter family of mixed states in Eq. (18), does not induce ESD in the state.

  3. Notice here that while the single qubit Kraus operators of depolarizing noise correspond to Pauli spin operators [see Eq. (15)], the Kraus operators of depolarizing noise on a qutrit correspond to generalized Pauli spin operators [see Eq. (28)].

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Zurek, W.H.: Decoherence, einselection and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Schlosshawer, M.: Decoherence, the measurement problem and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005)

    Article  ADS  Google Scholar 

  4. Simon, C., Kempe, J.: Robustness of multiparty entanglement. Phys. Rev. A 65, 052327 (2002)

    Article  ADS  Google Scholar 

  5. Dür, W., Briegel, H.J.: Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004)

    Article  Google Scholar 

  6. Aolita, L., et al.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. 100, 080501 (2008)

    Article  ADS  Google Scholar 

  7. Diósi, L.. In: Benatti, F., Floreanini, R. (eds.) Irreversible Quantum Dynamics. Springer, Berlin (2003)

  8. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  9. Dodd, P.J., Halliwell, J.J.: Disentanglement and decoherence by open system dynamics. Phys. Rev. A 69, 052105 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  11. Roszak, K., Machnikowski, P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A. 73, 022313 (2006)

    Article  ADS  Google Scholar 

  12. Yönac, M., Yu, T., Eberly, J.H.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B 39, S621 (2006)

    Article  Google Scholar 

  13. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006)

    Article  ADS  Google Scholar 

  14. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 316, 555 (2007)

    Article  Google Scholar 

  15. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inf. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Cui, H.T., Li, K., Yi, X.X.: Study on the sudden death of entanglement. Phys. Lett. A 365, 44 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Almeida, M.P., et al.: Environment induced sudden death of entanglement. Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  18. Ann, K., Jaegar, G.: Local dephasing induced entanglement sudden death in two component finite dimensional systems. Phys. Rev. A 76, 044101 (2007)

    Article  ADS  Google Scholar 

  19. Ali, M., Rau, A.R.P., Ranade, K.: Disentanglement in qubit–qutrit systems, arXiv:0710.2238 [quantph]

  20. Ann, K., Jaeger, G.: Entanglement sudden death in qubit–qutrit systems. Phys. Lett. A 372, 579–583 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Li, J., Chalapat, K., Paraoanu, G.S.: Enhancement of sudden death of entanglement for driven qubits. J. Low Temp. Phys. 153, 294 (2008)

    Article  ADS  Google Scholar 

  22. Bellomo, B., et al.: Entanglement degradation in the solid state: interplay of adiabatic and quantum noise. Phys. Rev. A 81, 062309 (2010)

    Article  ADS  Google Scholar 

  23. Khan, S.: Generation and sudden death of entanglement in qubit–qutrit systems with depolarising noise. Math. Struct. Comput. Sci. 23, 1220 (2013)

    Article  MATH  Google Scholar 

  24. Franco, R.L., et al.: Entanglement dynamics in superconducting qubits affected by local bistable impurities. Phys. Scr. T147, 014019 (2012)

    Article  ADS  Google Scholar 

  25. Qian, X.-F., Eberly, J.H.: Initial conditions and entanglement sudden death. Phys. Lett. A 376, 2931 (2012)

    Article  ADS  Google Scholar 

  26. Yashodamma, K.O., Sudha.: Is composite noise necessary for sudden death of entanglement? J. Res. Phys. 3, 41 (2013)

  27. Rau, A.R.P., Ali, M., Alber, G.: Hastening delaying or averting sudden death of quantum entanglement. Eur. Phys. Lett. 82, 40002 (2008)

    Article  ADS  Google Scholar 

  28. Bellomo, B., Franco, R.L., Maniscalco, S., Compagno, G.: Entanglement trapping in structural environments. Phys. Rev. A 78, 060302(R) (2008)

    Article  ADS  Google Scholar 

  29. Ali, M., Alber, G., Rau, A.R.P.: Manipulating entanglement sudden death of two-qubit X-states in zero and finite-temperature reservoirs. J. Phys. B 42, 025501 (2009)

    Article  ADS  Google Scholar 

  30. Bellomo, B., Franco, R.L., Compagno, G.: Long-time preservation of nonlocal entanglement. Adv. Sci. Lett. 2, 459 (2009)

    Article  Google Scholar 

  31. Siomau, M., Kamli, A.A.: Defeating entanglement sudden death by a single local filtering. Phys. Rev. A 86, 032304 (2012)

    Article  ADS  Google Scholar 

  32. Yashodamma, K.O., Geetha, P.J., Sudha.: Purification and retrieval of entanglement via single local filtering. Int. J. Quantum Inf. 12, 1450004 (2014)

  33. D’Arrigo, A. et al.: Recovering Entanglement by Local Pperations. arXiv:1207.3294 [quantph]

  34. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2007)

    Article  ADS  Google Scholar 

  37. Salimi, S., Soltanzadeh, M.M.: Investigation of quantum roulette. Int. J. Quantum Inf. 7, 615 (2009)

    Article  MATH  Google Scholar 

  38. Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found. Phys. 39, 790 (2009)

  39. Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit–qutrit system in non-inertial frames. Quantum Inf. Process 11, 443–454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

K. O. Yashodamma and P. J. Geetha acknowledge the support of Department of Science and Technology (DST), Govt. of India through the award of INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashodamma, K.O., Geetha, P.J. & Sudha Effectiveness of depolarizing noise in causing sudden death of entanglement. Quantum Inf Process 13, 2551–2565 (2014). https://doi.org/10.1007/s11128-014-0812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0812-0

Keywords

Navigation