Skip to main content
Log in

Protocols of quantum key agreement solely using Bell states and Bell measurement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two protocols of quantum key agreement (QKA) that solely use Bell state and Bell measurement are proposed. The first protocol of QKA proposed here is designed for two-party QKA, whereas the second protocol is designed for multi-party QKA. The proposed protocols are also generalized to implement QKA using a set of multi-partite entangled states (e.g., 4-qubit cluster state and \(\Omega \) state). Security of these protocols arises from the monogamy of entanglement. This is in contrast to the existing protocols of QKA where security arises from the use of non-orthogonal state (non-commutativity principle). Further, it is shown that all the quantum systems that are useful for implementation of quantum dialogue and most of the protocols of secure direct quantum communication can be modified to implement protocols of QKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here subscripts A, B, C denote Alice, Bob, and Charlie, respectively.

  2. In the stabilizer formalism of quantum error correction Pauli group is frequently used (see Section 10.5.1 of [32]). It is usually defined as \(G_{1}=\left\{ \pm I,\pm iI,\pm \sigma _{x},\pm i\sigma _{x},\pm \sigma _{y},\pm i\sigma _{y},\pm \sigma _{z},\pm i\sigma _{z}\right\} ,\) where \(\sigma _{i}\) is a Pauli matrix. The inclusion of \(\pm 1\) and \(\pm i\) ensures that \(G_{1}\) is closed under standard matrix multiplication, but the effect of \(\sigma _{i},\,-\sigma _{i},\, i\sigma _{i}\), and \(-i\sigma _{i}\) on a quantum state is the same. So in [33], we redefined the multiplication operation for two elements of the group in such a way that global phase is ignored from the product of matrices. This is consistent with the quantum mechanics and it gives us a modified Pauli group \(G_{1}=\{I,\,\sigma _{x},\, i\sigma _{y},\,\sigma _{z}\}=\{I,\, X,\, iY,\, Z\}.\)

  3. In \(\mathrm{PP^{GV}}\)Alice does not need to disclose her key \(K_{A}\). Everything else is the same and as a consequence \(b=2n,\, q=4n\) and \(c=n\) with \(c\) being the number of bits in the message or key that is transmitted.

References

  1. Bennett, C.H., Brassed, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  6. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  7. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337–1344 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  Google Scholar 

  9. Chong, S.-K., Hwang, T.: Quantum key agreement protocol based on BB84. Optic Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  10. Yin, X.-R., Ma, W.-P., Liu, W.-Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gisin, N., Renner, R., Wolf, S.: classical and quantum key agreement: Is there a classical analog to bound entanglement? Algorithmica 34, 389–412 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dijk, M. v., Koppelaar, A.: Quantum key agreement. In: Proceedings of IEEE International Symposium on Information Theory, IEEE, pp. 350–350 (1998)

  13. Tsai, C.W., Hwang, T.: On “Quantum key agreement protocol”, Technical Report, C-S-I-E, NCKU. Taiwan, R.O.C. (2009)

  14. Tsai, C.W., Chong S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010), pp. 210–213. National Chiao Tung University, Hsinchu, Taiwan, 27–28 May (2010)

  15. Chong, S.-K., Tsai, C.W., Hwang, T.: Improvement on “Quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Info. Process. 12, 1797–1805 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvement on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Huang, W., Wen, Q.-Y., Liu, B., Su Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles, arXiv:1308.2777 (quant-ph)

  20. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simon, B.-W., Menezes, A.: Authenticated Diffe-Hellman key agreement protocols in selected areas in cryptography. Springer, Berlin Heidelberg (1999)

    Google Scholar 

  22. Victor, S.: Lower bounds for discrete logarithms and related problems. In Advances in Cryptology-EUROCRYPT’97, pp. 256–266. Springer, Berlin Heidelberg (1997)

  23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei, pp. 236–242 (2004)

  25. Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)

    Article  MathSciNet  Google Scholar 

  27. Yadav, P.,Srikanth R., Pathak, A.: Generalization of the Goldenberg-Vaidman QKD protocol, arXiv:1209.4304 (quant-ph)

  28. Avella, A., Brida, G., Degiovanni, I.P., Genovese, M., Gramegna, M., Traina, P.: Experimental quantum-cryptography scheme based on orthogonal states. Phys. Rev. A 82, 062309 (2010)

    Article  ADS  Google Scholar 

  29. Ren, M., Wu, G., Wu, E., Zeng, H.: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21, 755–760 (2011)

    Article  ADS  Google Scholar 

  30. Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247–252 (2012)

    Article  ADS  Google Scholar 

  31. Liu, Yang, et al.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)

    Article  ADS  Google Scholar 

  32. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)

    Google Scholar 

  33. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  34. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  35. Cai, Q.-Y., Li, B.-W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  36. Pathak, A.: Elements of quantum computation and quantum communication. CRC Press, Boca Raton, USA (2013)

    MATH  Google Scholar 

  37. An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

AP thanks Department of Science and Technology (DST), India for support provided through the DST project No. SR/S2/LOP-0012/2010 and he also acknowledges the supports received from the projects CZ.1.05/2.1.00/03.0058 and CZ.1.07/2.3.00/20.0017 of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, C., Alam, N. & Pathak, A. Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf Process 13, 2391–2405 (2014). https://doi.org/10.1007/s11128-014-0784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0784-0

Keywords

Navigation