Skip to main content
Log in

Tools in the Riemannian geometry of quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An introduction is first given of recent developments in the Riemannian geometry of quantum computation in which the quantum evolution is represented in the tangent space manifold of the special unitary unimodular group for n qubits. The Riemannian right-invariant metric, connection, curvature, geodesic equation for minimal complexity quantum circuits, Jacobi equation, and the lifted Jacobi equation for varying penalty parameter are reviewed. Sharpened tools for calculating the geodesic derivative are presented. The geodesic derivative may facilitate the numerical investigation of conjugate points and the global characteristics of geodesic paths in the group manifold, the determination of optimal quantum circuits for carrying out a quantum computation, and the determination of the complexity of particular quantum algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Montgomery R.: A Tour of Sub-Riemannian Geometries, Their Geodesics and Applications, Vol. 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2002)

    Google Scholar 

  3. Khaneja N., Glaser S.J., Brockett R.: Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer. Phys. Rev. A 65(1–11), 032301 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  4. Moseley C.G.: Geometric control of quantum spin systems. In: Donkor, E., Pirich, A.R., Brandt, H.E. (eds) Quantum Information and Computation II, Proceedings of the SPIE vol. 5436., pp. 319–323. SPIE, Bellingham (2004)

    Google Scholar 

  5. Nielsen M.A.: A geometric approach to quantum circuit lower bounds. Quantum Inf. Comput. 6, 213–262 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Nielsen M.A., Dowling M.R., Gu M., Doherty A.C.: Optimal control, geometry, and quantum computing. Phys. Rev. A 73(1–7), 062323 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  7. Nielsen M.A., Dowling M.R., Gu M., Doherty A.C.: Quantum computation as geometry. Science 311, 1133–1135 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Dowling M.R., Nielsen M.A.: The geometry of quantum computation. Quantum Inf. Comput. 8, 0861–0899 (2008)

    MathSciNet  Google Scholar 

  9. Clelland J.N., Moseley C.G.: Sub-Finsler geometry in dimension three. Differ. Geome. Appl. 24, 628–651 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou B.-Y., Hou B.-Y.: Differential Geometry for Physicists. World Scientific, Singapore (1997)

    Book  MATH  Google Scholar 

  11. Sagle A.A., Walde R.E.: Introduction to Lie Groups and Lie Algebras. Academic Press, New York (1973)

    MATH  Google Scholar 

  12. Conlon L.: Differentiable Manifolds, 2nd edn. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  13. Lee J.M.: Riemannian Manifolds: An Introduction to Curvature. Springer, New York (1997)

    MATH  Google Scholar 

  14. Berger M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  15. Milnor J.: Morse Theory. Princeton University Press, Princeton (1973)

    Google Scholar 

  16. Hall B.C.: Lie Groups, Lie Algebras, and Representations. Springer, New York (2004)

    Google Scholar 

  17. Farout J.: Analysis on Lie Groups. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  18. Postnikov M.M.: Geometry VI: Riemannian Geometry, Encyclopedia of Mathematical Sciences, vol. 91. Springer, Berlin (2001)

    Google Scholar 

  19. Petersen P.: Riemannian Geometry, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  20. Jost J.: Riemannian Geometry and Geometric Analysis, 5th edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  21. Wasserman R.: Tensors and Manifolds, 2nd edn. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  22. Naimark M.A., Stern A.I.: Theory of Group Representations. Springer, New York (1982)

    Book  MATH  Google Scholar 

  23. Sepanski M.R.: Compact Lie Groups. Springer, New York (2007)

    Book  MATH  Google Scholar 

  24. Pfeifer W.: The Lie Algebras su(N). Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  25. Stillwell J.: Naive Lie Theory. Springer, NY (2008)

    Book  MATH  Google Scholar 

  26. Cornwell J.F.: Group Theory in Physics: An Introduction. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  27. Cornwell J.F.: Group Theory in Physics, vols. 1 & 2. Academic Press, London (1984)

    Google Scholar 

  28. Steeb W., Hardy Y.: Problems and Solutions in Quantum Computing and Quantum Information, 2nd edn. World Scientific, New Jersey (2006)

    MATH  Google Scholar 

  29. Weigert S.: Baker-Campbell-Hausdorff relation for special unitary groups SU(N). J. Phys. A Math. Gen. 30, 8739–8749 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Reutenauer C.: Free Lie Algebras. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  31. Dynkin E.: Calculation of the coefficients in the Campbell-Hausdorff formula. Dokl. Akad. Nauk 57, 323–326 (1947)

    MathSciNet  MATH  Google Scholar 

  32. Baker, H.F.: Alternants and continuous groups. In: Proceedings of the London Mathematical Society, vol. 3, 2nd edn., pp. 24–47 (1905)

  33. Campbell, J.E. On a law of combination of operators bearing on the theory of continuous transformation groups. In: Proceedings of the London Mathematical Society, vol. 28, 1st edn., pp. 381–390 (1897)

  34. Campbell, J.E.: On a law of combination of operators. In: Proceedings of the London Mathematical Society, vol. 29, 1st edn., pp. 14–32 (1898)

  35. Hausdorff F.: Die symbolische Exponentialformel in der Gruppentheorie. Leipziger Berichte 58, 19–48 (1906)

    Google Scholar 

  36. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, pp. 223, 224, 310. W. H. Freeman and Company, New York (1973)

  37. Lax P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  38. Abraham R., Marsden J.E.: Foundations of Mechanics, 2nd edn. AMS Chelsea Publishing, American Mathematical Society, Providence (2008)

    Google Scholar 

  39. Zwillinger D.: Handbook of Differential Equations, 3rd edn. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  40. Kaushal R.S., Parashar D.: Advanced Methods of Mathematical Physics. CRC Press, Boca Raton (2000)

    Google Scholar 

  41. Miwa T., Jimbo M., Date E.: Solitons. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  42. Debnath L.: Nonlinear Partial Differential Equations. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  43. Zeidler E.: Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physics. Springer, New York (1997)

    Google Scholar 

  44. Brandt, H.E.: Riemannian geometry of quantum computation. In: Lomonaco, S.J. (ed.) Proceedings of the Symposia Applied Mathematics, vol. 68, pp. 61–101 (2010)

  45. Milnor J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. Arnold V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)

    Google Scholar 

  47. Arnold V.I., Khesin B.A.: Topological Methods in Hydrodynamics. Springer, New York (1999)

    Google Scholar 

  48. Brandt H.E.: Riemannian curvature in the differential geometry of quantum computation. Phys. E 42, 449–453 (2010)

    Article  MathSciNet  Google Scholar 

  49. Brandt H.E.: Riemannian geometry of quantum computation. Nonlinear Anal. 71, e474–e485 (2009)

    Article  MathSciNet  Google Scholar 

  50. Milnor J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  51. Greiner W., Reinhardt J.: Field Quantization, vol. 219. Springer, Berlin (1996)

    Google Scholar 

  52. Weinberg S.: The Quantum Theory of Fields I, vol. 143. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  53. Horn R., Johnson C.: Topics in Matrix Analysis, vol. 255. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Brandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, H.E. Tools in the Riemannian geometry of quantum computation. Quantum Inf Process 11, 787–839 (2012). https://doi.org/10.1007/s11128-011-0290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0290-6

Keywords

Navigation