Skip to main content

Some Geometric Consequences of the Schrödinger Problem

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9389))

Included in the following conference series:

  • 2093 Accesses

Abstract

This note presents a short review of the Schrödinger problem and of the first steps that might lead to interesting consequences in terms of geometry. We stress the analogies between this entropy minimization problem and the renowned optimal transport problem, in search for a theory of lower bounded curvature for metric spaces, including discrete graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  2. Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37(2), A1111–A1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Y., Georgiou, T., Pavon, M.: On the relation between optimal transport and schrödinger bridges: a stochastic control viewpoint. Preprint, arXiv:1412.4430

  4. Chen, Y., Georgiou, T., Pavon, M.: Optimal transport over a linear dynamical system. Preprint, arXiv:1502.01265

  5. Chung, K.L., Zambrini, J.-C.: Introduction to Random Time and Quantum Randomness. World Scientific, Hackensack (2008)

    MATH  Google Scholar 

  6. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. NIPS 2013, arXiv:1306.0895 (2013)

  7. Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.-L. (ed.) École d’été de Probabilités de Saint-Flour XV-XVII-1985-87. Lecture Notes in Mathematics, vol. 1362, pp. 101–203. Springer, Berlin (1988)

    Chapter  Google Scholar 

  8. Gigli, N.: Nonsmooth differential geometry. An approach tailored for spaces with Ricci curvature bounded from below. Preprint. http://cvgmt.sns.it/paper/2468/

  9. Léonard, C.: Lazy random walks and optimal transport on graphs. Preprint. arXiv:1308.0226, to appear in Ann. Probab

  10. Léonard, C.: On the convexity of the entropy along entropic interpolations. Preprint, arXiv:1310.1274

  11. Léonard, C.: From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct. Anal. 262, 1879–1920 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34(4), 1533–1574 (2014)

    Article  MATH  Google Scholar 

  13. McCann, R.: A convexity theory for interacting gases and equilibrium crystals. Ph.D. thesis, Princeton Univ. (1994)

    Google Scholar 

  14. Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of \(h\)-path processes. Probab. Theor. Relat. Fields 129, 245–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  16. Schrödinger, E.: Über die umkehrung der naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144, 144–153 (1931)

    MATH  Google Scholar 

  17. Schrödinger, E.: Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. H. Poincaré 2, 269–310 (1932). http://archive.numdam.org/ARCHIVE/AIHP/

    MATH  Google Scholar 

  18. Sturm, K.-T., von Renesse, M.-K.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Villani, C.: Optimal Transport. Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Léonard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Léonard, C. (2015). Some Geometric Consequences of the Schrödinger Problem. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25040-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25039-7

  • Online ISBN: 978-3-319-25040-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics