Skip to main content
Log in

Stochastic frontier models with network selectivity

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

Worker peer-effects and managerial selection have received limited attention in the stochastic frontier analysis literature. We develop a parametric production function model that allows for worker peer-effects in output and worker-level inefficiency that is correlated with a manager’s selection of worker teams. The model is the usual “composed error” specification of the stochastic frontier model, but we allow for managerial selectivity (endogeneity) that works through the worker-level inefficiency term. The new specification captures both worker-level inefficiency and the manager’s ability to efficiently select teams to produce output. As the correlation between the manager’s selection equation and worker inefficiency goes to zero, our parametric model reduces to the normal-exponential stochastic frontier model of Aigner et al. (1977) with peer-effects. A comprehensive application to the NBA is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Kumbhakar and Schmidt (2016).

  2. This is similar to the approach suggested by Angrist (2014) and developed in Horrace et al. (2016).

  3. If Zjt is random then \(F_{st}^ \ast\) is conditional on Zjt.

  4. A widely used example is the group averaging weight matrix, \(W_{st}^ \ast = {\textstyle{1 \over {N_t - 1}}}\left( {1_{N_t}1_{N_t}^\prime - I_{N_t}} \right)\) where \(1_{N_t}\) is an Nt × 1 vector of ones and \(I_{N_t}\) is an Nt × Nt identity matrix.

  5. See Horrace et al. (2016).

  6. See Horrace et al. (2016) Eq. (5) for more on this point.

  7. The choice of the exponential distribution here is of course to use some bivariate exponential distribution to set up a statistical dependence between the two errors.

  8. There are other classes of bivariate exponential distributions which possess this uniqueness property, and we leave exploration of these parametric alternatives to future research. One could also explore inducing cross-equation correlation with a copula.

  9. A less restrictive bound is −1 ≤ ρ ≤ 0, but to the best of our knowledge, there is no such bivariate exponential distribution with exponential marginals. Distributions with the bound of 0 ≤ ρ ≤ 1 exist, but they may not be consistent with our model.

  10. In order to reduce the number of parameters we need to estimate, we may replace β1 with its consistent estimator β1 conditional on λ which is \(\hat \beta _1\) = \(\left( {X_1^\prime QX_1} \right)^{ - 1}X_1^\prime Q\left( {Y - \lambda WY} \right)\), where Q is the within transformation matrix, and X1 and Y are the matrices containing all the observations over t.

  11. It is important to distiguish between our outcome variable “player efficiency” (y) and the error component “player inefficiency” (u). The former is observed, and the latter is not.

  12. This is in the spirit of Horrace et al. (2016) who drop periods less than 30 s in duration.

  13. Horrace et al. (2016) consider both same- and cross-type weight matrices. The different-type weight matrix is Wd, where \(W_0^d\) = [w0,ij] is an adjacency matrix with w0,ij = 1 if the ith and jth players are a guard and a forward (or vice versa). Then row-normalize \(W_0^d\) so that Wd1N = 1N. However, they noticed that including both weight matrices into the model at the same time may lead to a multicollinearity problem. Therefore, we only include the same type weight matrix in this exercise.

  14. The RPI for each opposing team is obtained from ESPN: http://www.espn.com/nba/stats/rpi//year/2015.

  15. All analyses are done in MatLab using the fmincon optimizer with a convergence tolerance of 108.

  16. In fact, the coaching effect is insignificant for all teams. This is similar to the findings of Horrace et al. (2016) for the Syracuse University Mens Basketball team. Greene (2010) also finds an insignificant selection effect in his estimation of a stochastic frontier model for health attainment from a selected sample of OECD countries.

  17. We always applied the Murphy and Topel correction to our standard errors.

  18. For example, see Battese and Coelli (1988) or Kumbhakar et al. (2013).

  19. San Antonio and the Golden State Warriors were also division winners, but their models did not converge.

  20. Equation (2) can be rewritten as \(Y_{st}\) = \(\lambda W_{st}Y_{st} + X_{1,st}\beta _1\) + \(1_{N_t}x_{2,st}\beta _2\) − \(E\left( {u_{st}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right) + \mu _{st}^ \ast\), where \(\mu _{st}^ \ast\) = \(v_{st} - u_{st} + E\left( {u_{st}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)\). Then, the within transformation on the equation leads to \(QY_{st}\) = \(Q\lambda W_{st}Y_{st} + QX_{1,st}\beta _1 + Q\mu _{st}^ \ast\), where Q is the within transformation matrix. Now the error term \(Q\mu _{st}^ \ast\) has zero mean by construction

References

  • Aigner D, Lovell C, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econ 6:21–37

    Article  Google Scholar 

  • Amsler C, Prokhorov C, Schmidt P (2016) Endogeneity in stochastic frontier models. J Econ 190:280–288

    Article  Google Scholar 

  • Angrist J (2014) The perils of peer effects. Labour Econ 30(C):98–108

    Article  Google Scholar 

  • Anselin L (1988) Spatial econometrics: Methods and models. Kluwer Academic

  • Battese GE, Coelli TJ (1988) Prediction of firm-level technical inefficiencies with a generalized frontier production function and panel data. J Econom 38:387–399

    Article  Google Scholar 

  • Bourguignon F, Fournier M, Gurgand M (2007) Selection bias corrections based on the multinomial logit model: monte carlo comparisons. J Econ Surv 21:174–205

    Article  Google Scholar 

  • Bramoulle Y, Djebbari H, Fortin B (2009) Identification of peer-effects through social networks. J Econ 150:41–55

    Article  Google Scholar 

  • Dahl G (2002) Mobility and the returns to education: testing a Roy model with multiple markets. Econometrica 70:2367–2420

    Article  Google Scholar 

  • Elhorst P (2010) Spatial panel data models. Handbook of applied spatial analysis. p377– p407

  • Frechet M (1951) Sur les tableaux de correlation dont les marges sont donnees. Ann. Univ: Lyon Sect. A 14:53–77

    Google Scholar 

  • Glass AJ, Kenjegalievay K, Sickles RC (2016) A spatial autoregressive stochastic frontier model for panel data with asymmetric effciency spillovers. J Econom 90:289–300

    Article  Google Scholar 

  • Glass AJ, Kenjegalievay K, Sickles RC, Weyman-Jones T (2016) The spatial efficiency multiplier and random effects in spatial stochastic frontier models. Unpublished manuscript

  • Greene W (2010) A stochastic frontier model with correction for sample selection. J Prod Anal 34:15–24

    Article  Google Scholar 

  • Guan Z, Kumbhakar SC, Myers RJ, Lansink AO (2009) Measuring excess capital capacity in agricultural production. Am J Agric Econom 91:765–776

    Article  Google Scholar 

  • Gumbel TJ (1960) Bivariate Exponential Distributions. Journal of the American Statistical Association 55:698–707

    Article  Google Scholar 

  • Heckman JJ (1979) Sample selection bias as a specification error. Econometrica 47:153–161

    Article  Google Scholar 

  • Horrace WC, Liu X, Patacchini E (2016) Endogenous network production functions with selectivity. J Econ 190:222–232

    Article  Google Scholar 

  • Jondrow J, Lovell K, Materov I, Schmidt P (1982) On the estimation of technical inefficiency in the stochastic frontier production function model. J Econ 19:233–238

    Article  Google Scholar 

  • Karakaplan MU, Kutlu L (2013) Handling endogeneity in stochastic frontier analysis, unpublished manuscript

  • Kelejian HH, Prucha IR (1999) Generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev 40:509–533

    Article  Google Scholar 

  • Kumbhakar SC, Lovell CAK (2000) Stochastic Frontier Analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kumbhakar SC, Parmeter CF, Tsionas EG (2013) A zero inefficiency stochastic frontier model. J Econom 172:66–76

    Article  Google Scholar 

  • Kumbhakar SC, Schmidt P (2016) Endogeneity problems in econometrics, editors’ introduction. J Econ 190:209–211

    Article  Google Scholar 

  • Kumbhakar SC, Tsionas M, Sipilainen T (2009) Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming. J ProdAnal 31(3):151–162

    Google Scholar 

  • Kutlu L (2010) Battese–Coelli estimator with endogenous regressors. Econom Lett 109:79–81

    Article  Google Scholar 

  • Lee LF (1983) Generalized econometric models with selectivity. Econometrica 51:507–512

    Article  Google Scholar 

  • Lee LF (2007) Identification and estimation of econometric models with group interactions, contextual factors and fixed effects. J Econ 140:333–374

    Article  Google Scholar 

  • McFadden DL (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (Ed.) Frontiers in econometrics. Academic Press, NY, p 105–142

  • Murphy K, Topel R (2002) Estimation and inference in two stem econometric models. J Bus Econ Stat 20:88–97

    Article  Google Scholar 

  • Tran KC, Tsionas EG (2013) GMM estimation of stochastic frontier models with endogenous regressors. Econom Lett 118:233–236

    Article  Google Scholar 

  • Tran KC, Tsionas EG (2015) Endogeneity in stochastic frontier models: copula approach without external instruments. Econom Lett 133:85–88

    Article  Google Scholar 

  • Tsionas, EG, Atkinson, SE, Assaf, AG, 2013. Limited information analysis of multiple output production, unpublished manuscript

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Horrace.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A: Mathematical derivations

  1. 1.

    \(h\left( {u_{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)\)

    $$\begin{array}{*{20}{l}} {h\left( {u_{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)} \hfill & = \hfill & {\frac{{{\int}_0^{Z _{s}{t}} {\kern 1pt} h\left( {\epsilon _{st},u_{ist}} \right)d\epsilon }}{{{\int}_0^{Z _{s}{t}} {\int}_0^\infty h\left( {\epsilon _{st},u_{ist}} \right)dud\epsilon }}} \hfill \\ {} \hfill & = \hfill & {\frac{1}{{1 - e^{ - \delta _{st}}}}{\int}_0^{Z _{s}{t}} h\left( {\epsilon _{st},u_{ist}} \right)d\epsilon .} \hfill \end{array}$$
    (11)
    $${\mathrm{Because}}{\kern 1pt} {\int}_0^{Z _{s}{t}} {\kern 1pt} h\left( {\epsilon _{st},u_{ist}} \right)d\epsilon = \frac{1}{{\sigma _u}}\left[ {e^{ - \frac{{u_{ist}}}{{\sigma _u}}} - \kappa _{st}e^{ - \kappa _{st}\frac{{u_{ist}}}{{\sigma _u}} - \delta _{st}}} \right],{\mathrm{where}}{\kern 1pt} \kappa _{st} = {\mathrm{1}} + \alpha \delta _{st},$$
    (12)
    $$h\left( {u_{ist}|\epsilon _{st} < \delta _{st}} \right) = \frac{1}{{\sigma _uP_{st}}}\left[ {e^{ - \frac{{u_{ist}}}{{\sigma _u}}} - \kappa _{st}e^{ - \kappa _{st}\frac{{u_{ist}}}{{\sigma _u}} - \delta _{st}}} \right],{\mathrm{where}}{\kern 1pt} P_{st} = 1 - e^{ - \delta _{st}}.$$
    (13)
  2. 2.

    \(E\left( {u_{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)\)

    $$\begin{array}{*{20}{l}} {E\left( {u_{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)} \hfill & = \hfill & {{\int}_0^\infty {\kern 1pt} u_{ist}h\left( {u_{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)du} \hfill \\ {} \hfill & = \hfill & {\frac{1}{{\sigma _uP_{st}}}{\int}_0^\infty {\kern 1pt} u_{ist}\left[ {e^{ - \frac{{u_{ist}}}{{\sigma _u}}} - \kappa _{st}e^{ - \kappa _{st}\frac{{u_{ist}}}{{\sigma _u}} - \delta _{st}}} \right]du} \hfill \\ {} \hfill & = \hfill & {\frac{{\sigma _u}}{{P_{st}}}\left[ {1 - \frac{1}{{\kappa _{st}}}e^{ - \delta _{st}}} \right].} \hfill \end{array}$$
    (14)
  3. 3.

    \(h\left( {\mu _{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)\), where μist = vist − uist

    $$\begin{array}{l}v_{ist}{\kern 1pt} {\mathrm{is}}{\kern 1pt} {\mathrm{independent}}{\kern 1pt} {\mathrm{of}}{\kern 1pt} u_{ist}{\kern 1pt} {\mathrm{and}}{\kern 1pt} \epsilon _{st}{\mathrm{,}}\\ {\mathrm{so}}{\kern 1pt} h\left( {u_{ist},v_{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right) = h\left( {u_{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)\frac{1}{{\sigma _v}}\phi \left( {\frac{{v_{ist}}}{{\sigma _v}}} \right),\\ {\mathrm{where}}{\kern 1pt} \phi {\kern 1pt} {\mathrm{(}} \cdot {\mathrm{)}}{\kern 1pt} {\mathrm{is}}{\kern 1pt} {\mathrm{standard}}{\kern 1pt} {\mathrm{normal}}{\kern 1pt} {\mathrm{pdf}},\\ {\mathrm{then}}{\kern 1pt} {\mathrm{the}}{\kern 1pt} h\left( {\mu _{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right){\mathrm{will}}{\kern 1pt} {\mathrm{be}}{\kern 1pt} {\mathrm{given}}{\kern 1pt} {\mathrm{by}},\end{array}$$
    (15)
    $$\begin{array}{*{20}{l}} {h\left( {\mu _{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)} \hfill & = \hfill & {{\int}_0^\infty {\kern 1pt} h\left( {u_{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)\frac{1}{{\sigma _v}}\phi \left( {\frac{{u_{ist} + \mu _{ist}}}{{\sigma _v}}} \right)du} \hfill \\ {} \hfill & = \hfill & {\frac{1}{{\sqrt {2\pi } \sigma _u\sigma _vP_{st}}}{\int}_0^\infty \left( {e^{ - \frac{{u_{ist}}}{{\sigma _u}}} - \kappa _{st}e^{ - \kappa _{st}\frac{{u_{ist}}}{{\sigma _u}} - \delta _{st}}} \right)e^{ - \frac{{(\mu _{ist} + u_{ist})^2}}{{2\sigma _v^2}}}du} \hfill \\ {} \hfill & = \hfill & {\frac{1}{{P_{st}}}\left[ {\frac{1}{{\sqrt {2\pi } \sigma _u\sigma _v}}{\int}_0^\infty {\kern 1pt} e^{ - \frac{{u_{ist}}}{{\sigma _u}} - \frac{{(\mu _{ist} + u_{ist})^2}}{{2\sigma _v^2}}}du} \right.} \hfill \\ {} \hfill & {} \hfill & {\left. { - \frac{1}{{\sqrt {2\pi } \frac{{\sigma _u}}{{\kappa _{st}}}\sigma _v}}{\int}_0^\infty {\kern 1pt} e^{ - \kappa _{st}\frac{{u_{ist}}}{{\sigma _u}} - \delta _{st} - \frac{{(\mu _{ist} + u_{ist})^2}}{{2\sigma _v^2}}}du} \right].} \hfill \\ {} \hfill & {} \hfill & {{\mathrm{Using}}{\kern 1pt} {\mathrm{the}}{\kern 1pt} {\mathrm{result}}{\kern 1pt} {\mathrm{from}}{\kern 1pt} {\mathrm{Kumbhakar}}{\kern 1pt} {\mathrm{and}}{\kern 1pt} {\mathrm{Lovell}}{\kern 1pt} {\mathrm{(2000}},{\mathrm{p80)}},} \hfill \\ {} \hfill & = \hfill & {\frac{1}{{\sigma _uP_{st}}}\left[ {{\mathrm{\Phi }}\left( { - \frac{{\mu _{ist}}}{{\sigma _v}} - \frac{{\sigma _v}}{{\sigma _u}}} \right)e^{\frac{{\mu _{ist}}}{{\sigma _u}} + \frac{{\sigma _v^2}}{{2\sigma _u^2}}}} \right.} \hfill \\ {} \hfill & {} \hfill & {\left. { - \frac{{\kappa _{st}}}{{e^{\delta _{st}}}}{\mathrm{\Phi }}\left( { - \frac{{\mu _{ist}}}{{\sigma _v}} - \frac{{\kappa _{st}\sigma _v}}{{\sigma _u}}} \right)e^{\frac{{\kappa _{st}\mu _{ist}}}{{\sigma _u}} + \frac{{\kappa _{st}^2\sigma _v^2}}{{2\sigma _u^2}}}} \right].} \hfill \end{array}$$
    (16)
  4. 4.

    \(E\left( {u_{ist}{\mathrm{|}}\mu _{ist},\epsilon _{st} < \delta _{st}} \right)\)

$$\begin{array}{*{20}{l}} {E\left( {u_{ist}{\mathrm{|}}\mu _{ist},\epsilon _{st} < \delta _{st}} \right)} \hfill & = \hfill & {{\int}_0^\infty {\kern 1pt} u\frac{{h\left( {u_{ist},\mu _{ist},\epsilon _{st} < \delta _{st}} \right)}}{{h\left( {\mu _{ist},\epsilon _{st} < \delta _{st}} \right)}}du} \hfill \\ {} \hfill & = \hfill & {{\int}_0^\infty u\frac{{h\left( {u_{ist},\mu _{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)}}{{h\left( {\mu _{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)}}du} \hfill \\ {} \hfill & = \hfill & {\frac{{\frac{1}{{\sqrt {2\pi } \sigma _v}}\left[ {{\int}_0^\infty {\kern 1pt} ue^{ - \frac{{u_{ist}}}{{\sigma _u}} - \frac{{\left( {\mu _{ist} + u_{ist}} \right)^2}}{{2\sigma _v^2}}}du - \frac{{\kappa _{st}}}{{e^{\delta _{st}}}}{\int}_0^\infty {\kern 1pt} ue^{ - \kappa _{st}\frac{{u_{ist}}}{{\sigma _u}} - \frac{{\left( {\mu _{ist} + u_{ist}} \right)^2}}{{2\sigma _v^2}}}du} \right]}}{{\underbrace {{\mathrm{\Phi }}\left( { - \frac{{\mu _{ist}}}{{\sigma _v}} - \frac{{\sigma _v}}{{\sigma _u}}} \right)e^{\frac{{\mu _{ist}}}{{\sigma _u}} + \frac{{\sigma _v^2}}{{2\sigma _u^2}}}}_{{\mathrm{(1)}}} - \underbrace {\frac{{\kappa _{st}}}{{e^{\delta _{st}}}}{\mathrm{\Phi }}\left( { - \frac{{\mu _{ist}}}{{\sigma _v}} - \frac{{\kappa _{st}\sigma _v}}{{\sigma _u}}} \right)e^{\frac{{\kappa _{st}\mu _{ist}}}{{\sigma _u}} + \frac{{\kappa _{st}^2\sigma _v^2}}{{2\sigma _u^2}}}}_{{\mathrm{(2)}}}}}} \hfill \\ {} \hfill & {} \hfill & {{\mathrm{Let}}\left( {\mathrm{1}} \right) = A_{ist}\left( {\mu _{ist}{\mathrm{|}}\delta _{st},\sigma _u,\sigma _v{\mathrm{,}}\alpha } \right){\mathrm{and}}\left( 2 \right) = B_{ist}\left( {\mu _{ist}{\mathrm{|}}\delta _{st}{\mathrm{,}}\sigma _u{\mathrm{,}}\sigma _v{\mathrm{,}}\alpha } \right),{\mathrm{then}},} \hfill \\ {} \hfill & = \hfill & {\frac{{A_{ist}}}{{A_{ist} - B_{ist}}}\frac{1}{{\sqrt {2\pi } \sigma _vA_{ist}}}{\int}_0^\infty {\kern 1pt} ue^{ - \frac{{u_{ist}}}{{\sigma _u}} - \frac{{\left( {\mu _{ist} + u_{ist}} \right)^2}}{{2\sigma _v^2}}}du} \hfill \\ {} \hfill & {} \hfill & { - \frac{{B_{ist}}}{{A_{ist} - B_{ist}}}\frac{1}{{\sqrt {2\pi } \sigma _v\frac{{e^{\delta _{st}}}}{{\kappa _{st}}}B_{ist}}}{\int}_0^\infty {\kern 1pt} ue^{ - \kappa _{st}\frac{{u_{ist}}}{{\sigma _u}} - \frac{{\left( {\mu _{ist} + u_{ist}} \right)^2}}{{2\sigma _v^2}}}du} \hfill \\ {} \hfill & {} \hfill & {{\mathrm{Using}}{\kern 1pt} {\mathrm{the}}{\kern 1pt} {\mathrm{result}}{\kern 1pt} {\mathrm{from}}{\kern 1pt} {\mathrm{Kumbhakar}}{\kern 1pt} {\mathrm{and}}{\kern 1pt} {\mathrm{Lovell(2000}},{\mathrm{p80)}},{\mathrm{this}}{\kern 1pt} {\mathrm{reduces}}{\kern 1pt} {\mathrm{to}}} \hfill \\ {} \hfill & = \hfill & {\frac{{A_{ist}}}{{A_{ist} - B_{ist}}}\left( {{\mathrm{\Lambda }}_{ist} + \sigma _v\left[ {\frac{{\phi \left( { - {\mathrm{\Lambda }}_{ist}/\sigma _v} \right)}}{{{\mathrm{\Phi }}\left( {\Lambda _{ist}{\mathrm{/}}\sigma _v} \right)}}} \right]} \right)} \hfill \\ {} \hfill & {} \hfill & { - \frac{{B_{ist}}}{{A_{ist} - B_{ist}}}\left( {{\mathrm{\Lambda }}_{ist}^ \ast + \sigma _v\left[ {\frac{{\phi \left( { - {\mathrm{\Lambda }}_{ist}^ \ast {\mathrm{/}}\sigma _v} \right)}}{{{\mathrm{\Phi }}\left( {{\mathrm{\Lambda }}_{ist}^ \ast {\mathrm{/}}\sigma _v} \right)}}} \right]} \right),} \hfill \\ {} \hfill & {} \hfill & {{\mathrm{where}}{\kern 1pt} {\mathrm{\Lambda }}_{ist} = - \mu _{ist} - \frac{{\sigma _v^2}}{{\sigma _u}}{\mathrm{and}}{\kern 1pt} {\mathrm{\Lambda }}_{ist}^ \ast = - \mu _{ist} - \frac{{\kappa _{st}\sigma _v^2}}{{\sigma _u}}.} \hfill \end{array}$$
(17)

Appendix B: Three-step estimation approach

Three-step estimation proceeds as follows.

Step 1: Compute \(\hat \delta _{st} = F^{ - 1}\left( {\hat P_{st}} \right)\) as in the two-step approach.

Step 2: Do a within transformation on the production function Eq. (2) to eliminate the selection bias, and then run Conditional Maximum Likelihood estimation due to Lee (2007) or 2SLS to get \(\hat \lambda\) and \(\hat \beta _1\).Footnote 20

Using the efficient instruments IV = \(\left( {W_{st}X,W_{st}^2X \ldots } \right)\) for the right-hand side endogenous variables, WstYst, is a standard method for 2SLS estimation of \(\hat \lambda\) in the spatial econometrics literature. See Anselin (1988) or Kelejian and Prucha (1999). However, the applicability of this Fixed Effect-2SLS methodology heavily depends on the topology of the weight matrix, and this is closely related to the identification problem in network models. Since Bramoulle et al. (2009) and Cohen-Cole et al. (2012) extensively studied sufficient identification conditions for various network models, we won’t discuss them again here. Instead, we will show how network topology affects the applicability of Fixed Effect-2SLS. Let’s assume the network of group s in time t is given by \(W_{st}^ \ast\) = \({\textstyle{1 \over {N_t - 1}}}\left( {1_{N_t}1_{N_t}^\prime - I_{N_t}} \right)\), and Nt is constant over t, where Nt is the number of agents in a chosen group. This weight matrix has been widely used in spatial autoregressive models due to its simplicity, however, if we apply a within transformation on the network, we get \(QW_{st}^ \ast\) = \(- {\textstyle{1 \over {N_t - 1}}}Q\), then the set of IVs becomes \(\left( {QX,QW_{st}^ \ast X \ldots } \right)\) = \(\left( {QX, - {\textstyle{1 \over {N_t - 1}}}QX \ldots } \right)\), which implies the set of IVs is not full rank and suffers from a perfect multicollinearity as long as Nt doesn’t vary over t, which, in turn, leads to a failure of 2SLS. For this reason, Horrace et al. (2016) introduce two heterogeneous weight matrices using exclusion restrictions, \(W_{st}^1\) and \(W_{st}^2\), the same- and different-type weight matrices, respectively, where \(W_{0,st}^1\) = [w0,ij,st] is an adjacency matrix with w0,ij,st = 1 if the ith and jth workers in the group s in time t are of the same type and w0,ij,st = 0 otherwise. Similarly construct \(W_{0,st}^2\), then row-normalize \(W_{0,st}^1\) and \(W_{0,st}^2\) to produce \(W_{st}^1\) and \(W_{st}^2\) such that \(W_{st}^11_{N_t}\) = \(W_{st}^21_{N_t}\) = \(1_{N_t}\).

In short, in order to implement 3-step estimation, Nt should vary over t, or the weight matrices should be different enough from \(W_{st}^ \ast\). If those issues are addressed, we may apply CML or 2SLS.

Step 3: Using the estimates \(\hat \lambda\) and \(\hat \beta _1\) from above steps, compute \(\hat r_{st}\) = \(Y_{st} - \hat \lambda W_{st}Y_{st} - X_{1,st}\hat \beta _1\), then a consistent estimate for μst conditional on the x2,st and β2 is given by \(\hat \mu _{st}\) = \(\hat r_{st} - 1_{N_t}x_{2,st}\beta _2\). Plug \(\hat \mu _{st}\) and \(\hat \delta _{st}\) into (7) without the term \(\mathop {\sum}\nolimits_t {\kern 1pt} {\mathrm{ln}}\left| {I_{N_t} - \lambda W_{ts}} \right|\) because we already removed endogeneity due to the spatial autoregressive component in the right-hand side of the production equation from the second step, and run Pseudo-ML. Here we get \(\hat \beta _2\), \(\hat \sigma _u\), \(\hat \sigma _v\), and \(\hat \alpha\). As in the two step method, we use Murphy and Topel (2002) to correct the standard errors.

Appendix C: The partial and the second derivatives of the log-likelihood and adjustment of the standard error

$$\begin{array}{*{20}{l}} {{\mathrm{ln}}{\kern 1pt} L} \hfill & = \hfill & {\mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} {\kern 1pt} {\mathrm{ln}}{\kern 1pt} h\left( {\epsilon _{st} < \delta _{st}} \right)h\left( {\mu _{ist}{\mathrm{|}}\epsilon _{st} < \delta _{st}} \right)} \hfill \\ {} \hfill & = \hfill & {\mathop {\sum}\limits_t {\kern 1pt} N_t{\kern 1pt} {\mathrm{ln}}\frac{\eta }{{\sigma _v}} + \mathop {\sum}\limits_t {\kern 1pt} {\mathrm{ln}}\left| {I_{N_t} - \lambda W_{st}} \right|} \hfill \\ {} \hfill & {} \hfill & { + \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} {\kern 1pt} {\mathrm{ln}}\left[ {{\mathrm{\Phi }}\left( { - \frac{{\mu _{ist}}}{{\sigma _v}} - \eta } \right)e^{\frac{{\mu _{ist}\eta }}{{\sigma _v}} + \frac{1}{2}\eta ^2}} \right.} \hfill \\ {} \hfill & {} \hfill & {\left. { - \frac{{\kappa _{st}}}{{e^{\delta _{st}}}}{\mathrm{\Phi }}\left( { - \frac{{\mu _{ist}}}{{\sigma _v}} - \kappa _{st}\eta } \right)e^{\frac{{\kappa _{st}\mu _{ist}\eta }}{{\sigma _v}} + \frac{{\kappa _{st}^2\eta ^2}}{2}}} \right].} \hfill \end{array}$$
  1. 1.

    Notation For simplicity, we use the following notation,

    $$\omega _{ist} = - \frac{{\mu _{ist}}}{{\sigma _v}} - \eta ,\quad \omega _{ist}^{\kappa _{st}} = - \frac{{\mu _{ist}}}{{\sigma _v}} - \kappa _{st}\eta ,$$
    (18)
    $$\begin{array}{l}\phi _{ist} = \phi \left( {\omega _{ist}} \right),\quad \phi _{ist}^{\kappa _{st}} = \phi \left( {\omega _{ist}^{\kappa _{st}}} \right),\\ {\mathrm{\Phi }}_{ist} = {\mathrm{\Phi }}\left( {\omega _{ist}} \right),\quad {\mathrm{\Phi }}_{ist}^{\kappa _{st}} = {\mathrm{\Phi }}\left( {\omega _{ist}^{\kappa _{st}}} \right),\end{array}$$
    (19)
    $$\tau _{ist} = e^{\frac{{\mu _{ist}\eta }}{{\sigma _v}} + \frac{1}{2}\eta ^2},\quad \tau _{ist}^{\kappa _{st}} = e^{\frac{{\kappa _{st}\mu _{ist}\eta }}{{\sigma _v}} + \frac{{\kappa _{st}^2\eta ^2}}{2}},$$
    (20)
    $${\mathrm{\Psi }}_{ist} = {\mathrm{\Phi }}_{ist}\tau _{ist} - \frac{{\kappa _{st}}}{{e^{\delta _{st}}}}{\mathrm{\Phi }}_{ist}^{\kappa _{st}}\tau _{ist}^{\kappa _{st}}.$$
    (21)
  2. 2.

    The first derivatives

    $$\begin{array}{*{20}{l}} {\frac{{\partial {\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \lambda }}} \hfill & = \hfill & { - \mathop {\sum}\limits_t {\kern 1pt} tr\left[ {\left( {I_n - \lambda W_t} \right)^{ - 1}W_t} \right] + \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \frac{{\left( {\mathop {\sum}\limits_{j \ne i \in s} {\kern 1pt} w_{jt}y_{jst}} \right)}}{{\sigma _v}}\frac{{\xi _{ist}}}{{{\mathrm{\Psi }}_{ist}}},} \hfill \\ {} \hfill & {} \hfill & {{\mathrm{where}}{\kern 1pt} \xi _{ist} = \tau _{ist}\left( {\phi _{{\mathrm{ist}}} - \eta {\kern 1pt} {\mathrm{\Phi }}_{ist}} \right) - \frac{{\kappa _{st}}}{{e^{\delta _{st}}}}\tau _{ist}^{\kappa _{st}}\left( {\phi _{{\mathrm{ist}}}^{{\mathrm{\kappa }}_{{\mathrm{st}}}} - \kappa _{st}\eta {\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \right)} \hfill \end{array}$$
    (22)
    $$\begin{array}{*{20}{l}} {\frac{{\partial {\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \eta }}} \hfill & = \hfill & {\mathop {\sum}\limits_t \frac{{N_t}}{\eta } - \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \frac{{\xi _{ist}^\eta }}{{{\mathrm{\Psi }}_{ist}}},} \hfill \\ {} \hfill & {} \hfill & {{\mathrm{where}}{\kern 1pt} \xi _{ist}^\eta = \tau _{ist}\left( {\omega _{ist}{\mathrm{\Phi }}_{{\mathrm{ist}}} + \phi _{ist}} \right) - \frac{{\kappa _{st}^2}}{{e^{\delta _{st}}}}\tau _{ist}^{\kappa _{st}}\left( {\omega _{ist}^{\kappa _{st}}{\mathrm{\Phi }}_{ist}^{\kappa _{st}} + \phi _{ist}^{\kappa _{st}}} \right).} \hfill \end{array}$$
    (23)
    $$\frac{{\partial {\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \sigma _v}} = - \mathop {\sum}\limits_t \frac{{N_t}}{{\sigma _v}} + \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \frac{{\mu _{ist}}}{{\sigma _v^2}}\frac{{\xi _{ist}}}{{{\mathrm{\Psi }}_{ist}}}.$$
    (24)
    $$\frac{{\partial {\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \beta }} = \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \frac{{x_{ist}}}{{\sigma _v}}\frac{{\xi _{ist}}}{{{\mathrm{\Psi }}_{ist}}}.$$
    (25)
    $$\begin{array}{*{20}{l}} {\frac{{\partial {\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \alpha }}} \hfill & = \hfill & { - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{\tau _{ist}^{\kappa _{st}}\delta _{st}}}{{e^{\delta _{st}}}}\frac{{\xi _{ist}^\alpha }}{{{\mathrm{\Psi }}_{ist}}},} \hfill \\ {} \hfill & {} \hfill & {{\mathrm{where}}{\kern 1pt} \xi _{ist}^\alpha = {\mathrm{\Phi }}_{ist}^{\kappa _{st}} - \kappa _{st}\eta \left( {\omega _{ist}^{\kappa _{st}}{\mathrm{\Phi }}_{ist}^{\kappa _{st}} + \phi _{ist}^{\kappa _{st}}} \right).} \hfill \end{array}$$
    (26)
  3. 3.

    The second derivatives

    $$\begin{array}{l}\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \lambda ^2}} = - \mathop {\sum}\limits_t {\kern 1pt} tr\left[ {\left( {I_n - \lambda W_t} \right)^{ - 1}W_t} \right]^2 - \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \left( {\frac{{\mathop {\sum}\limits_{j \ne i \in s} {\kern 1pt} w_{tj}y_{jst}}}{{\sigma _v}}} \right)^2\\ \underbrace {\left\{ {\left( {{\textstyle{{\xi _{ist}} \over {{\mathrm{\Psi }}_{ist}}}}} \right)^2 - {\textstyle{{\tau _{ist}\left( {\left( {\frac{{\mu _{ist}}}{{\sigma _v}} - \eta } \right)\phi _{ist} + \eta ^2{\mathrm{\Phi }}_{ist}} \right) - \frac{{\kappa _{st}}}{{e^{\delta _{st}}}}\tau _{ist}^{\kappa _{st}}\left( {\left( {\frac{{\mu _{ist}}}{{\sigma _v}} - \kappa _{st}\eta } \right)\phi _{ist}^{\kappa _{st}} + \kappa _{st}^2\eta ^2{\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \right)} \over {{\mathrm{\Psi }}_{ist}}}}} \right\}}_{\left( {Q_{ist}} \right)}.\end{array}$$
    (27a)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \lambda _1\partial \lambda _2}}} \hfill & = \hfill & { - \mathop {\sum}\limits_t {\kern 1pt} tr\left[ {\left( {I_n - \lambda _1W_t^1 - \lambda _2W_t^2} \right)^{ - 1}W_t^1\left( {I_n - \lambda _1W_t^1 - \lambda _2W_t^2} \right)^{ - 1}W_t^2} \right]} \hfill \\ {} \hfill & {} \hfill & { - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \left( {\frac{{\mathop {\sum}\limits_{j \ne i \in s} {\kern 1pt} w_{tj}^1y_{jst}\mathop {\sum}\limits_{j \ne i \in s} {\kern 1pt} w_{tj}^2y_{jst}}}{{\sigma _v^2}}} \right) \times Q_{ist}.} \hfill \end{array}$$
    (27b)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \eta ^2}}} \hfill & = \hfill & { - \mathop {\sum}\limits_t \frac{{N_t}}{{\eta ^2}} - \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \left\{ {\left( {\frac{{\xi _{ist}^\eta }}{{{\mathrm{\Psi }}_{ist}}}} \right)^2} \right.} \hfill \\ {} \hfill & {} \hfill & {\left. { - {\textstyle{{\tau _{ist}\left( {\omega _{ist}\phi _{ist} + \left( {\omega _{ist}^2 + 1} \right){\mathrm{\Phi }}_{ist}} \right) - \frac{{\kappa _{st}^3}}{{e^{\delta _{st}}}}\tau _{ist}^{\kappa _{st}}\left( {\omega _{ist}^{\kappa _{st}}\phi _{ist}^{\kappa _{st}} + \left( {\left( {\omega _{ist}^{\kappa _{st}}} \right)^2 + 1} \right){\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \right)} \over {{\mathrm{\Psi }}_{ist}}}}} \right\}.} \hfill \end{array}$$
    (28)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \sigma _v^2}} = - \mathop {\sum}\limits_t \frac{{N_t}}{{\sigma _v^2}} - \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \left( {\frac{{\mu _{ist}}}{{\sigma _v^2}}} \right)^2 \times Q_{ist}.} \hfill \end{array}$$
    (29)
    $$\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} nL}}{{\partial \beta \beta \prime }} = - \frac{1}{{\sigma _v^2}}\mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} {\kern 1pt} x_{ist}x_{ist}^\prime \times Q_{ist}.$$
    (30)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} nL}}{{\partial \alpha ^2}}} \hfill & = \hfill & { - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \left\{ {\left( {\frac{{\tau _{ist}^{\kappa _{st}}\delta _{st}}}{{e^{\delta _{st}}}}\frac{{\xi _{ist}^\alpha }}{{{\mathrm{\Psi }}_{ist}}}} \right)^2} \right.} \hfill \\ {} \hfill & {} \hfill & {\left. { - \frac{{\tau _{ist}^{\kappa _{st}}\delta _{st}^2\eta }}{{e^{\delta _{st}}}}\frac{{\omega _{ist}^{\kappa _{st}}\xi _{ist}^\alpha + 2\phi _{ist}^{\kappa _{st}} + {\mathrm{\Phi }}_{ist}^{\kappa _{st}}\left( {\omega _{ist}^{\kappa _{st}} - \kappa _{st}\eta } \right)}}{{{\mathrm{\Psi }}_{ist}}}} \right\}} \hfill \end{array}$$
    (31)
    $$\begin{array}{l}\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \lambda \partial \eta }} = \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \frac{{\left( {\mathop {\sum}\limits_{j \ne i \in s} w_{tj}y_{jst}} \right)}}{{\sigma _v}}\\ \underbrace {\left\{ {{\textstyle{{\xi _{ist}\xi _{ist}^\eta } \over {\Psi _{ist}^2}}} + {\textstyle{{\tau _{ist}\left( {\omega _{ist}\eta {\mathrm{\Phi }}_{ist} - {\mathrm{\Phi }}_{ist} + \eta \phi _{ist}} \right) - \frac{{\kappa _{st}^2}}{{e^{\delta _{st}}}}\tau _{ist}^{\kappa _{st}}\left( {\omega _{ist}^{\kappa _{st}}\kappa _{st}\eta {\mathrm{\Phi }}_{ist}^{\kappa _{st}} - {\mathrm{\Phi }}_{ist}^{\kappa _{st}} + \kappa _{st}\eta \phi _{ist}^{\kappa _{st}}} \right)} \over {{\mathrm{\Psi }}_{tsi}}}}} \right\}}_{\left( {R_{ist}} \right)}.\end{array}$$
    (32)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \lambda \partial \sigma _v}} = - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{\left( {\mathop {\sum}\limits_{j \ne i \in s} {\kern 1pt} w_{tj}y_{jst}} \right)}}{{\sigma _v^2}}\left\{ {\frac{{\xi _{ist}}}{{{\mathrm{\Psi }}_{ist}}} + \frac{{\mu _{ist}}}{{\sigma _v}} \times Q_{ist}} \right\}.} \hfill \end{array}$$
    (33)
    $$\frac{{\partial ^2lnL}}{{\partial \lambda \partial \beta \prime }} = - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{\left( {\mathop {\sum}\limits_{j \ne i \in s} {\kern 1pt} w_{tj}y_{jst}} \right)x_{ist}^\prime }}{{\sigma _v^2}} \times Q_{ist}.$$
    (34)
    $$\begin{array}{l}\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \lambda \partial \alpha }} = \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{\left( {\mathop {\sum}\limits_{j \ne i \in s} {\kern 1pt} w_{tj}y_{jst}} \right)}}{{\sigma _v}}\frac{{\tau _{ist}^{\kappa _{st}}\delta _{st}}}{{e^{\delta _{st}}}}\\ \underbrace {\left\{ {{\textstyle{{\xi _{ist}\xi _{ist}^\alpha } \over {{\mathrm{\Psi }}_{ist}^2}}} - {\textstyle{{\phi _{ist}^{\kappa _{st}}\left( {1 + \kappa _{st}\eta ^2} \right) + {\mathrm{\Phi }}_{ist}^{\kappa _{st}}\left( {\kappa _{st}^2\omega _{ist}^{\kappa _{st}}\eta ^2 - 2\kappa _{st}\eta } \right)} \over {{\mathrm{\Psi }}_{ist}}}}} \right\}}_{\left( {S_{ist}} \right)}.\end{array}$$
    (35)
    $$\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \eta \partial \sigma _v}} = \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{\mu _{ist}}}{{\sigma _v^2}} \times R_{ist}.$$
    (36)
    $$\frac{{\partial ^2lnL}}{{\partial \eta \partial \beta \prime }} = \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{x_{ist}^\prime }}{{\sigma _v}} \times R_{ist}.$$
    (37)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \eta \partial \alpha }}} \hfill & = \hfill & { - \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} \frac{{\tau _{ist}^{\kappa _{st}}\delta _{st}}}{{e^{\delta _{st}}}}\left\{ {\frac{{\xi _{ist}^\alpha \xi _{ist}^\eta }}{{{\mathrm{\Psi }}_{ist}^2}}} \right.} \hfill \\ {} \hfill & {} \hfill & {\left. { - \kappa _{st}\frac{{\omega _{ist}^{\kappa _{st}}\xi _{ist}^\alpha + 2\phi _{ist}^{\kappa _{st}} + {\mathrm{\Phi }}_{ist}^{\kappa _{st}}\left( {\omega _{ist}^{\kappa _{st}} - \kappa _{st}\eta } \right)}}{{{\mathrm{\Psi }}_{ist}}}} \right\}} \hfill \end{array}$$
    (38)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\mathrm{ln}}{\kern 1pt} L}}{{\partial \sigma _v\partial \beta }} = - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{x_{ist}}}{{\sigma _v^2}}\left\{ {\frac{{\xi _{ist}}}{{{\mathrm{\Psi }}_{ist}}} + \frac{{\mu _{ist}}}{{\sigma _v}} \times Q_{ist}} \right\}.} \hfill \end{array}$$
    (39)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \sigma _v\partial \alpha }} = \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{\mu _{ist}}}{{\sigma _v^2}}\frac{{\tau _{ist}^{\kappa _{st}}\delta _{st}}}{{e^{\delta _{st}}}} \times S_{ist}} \hfill \end{array}$$
    (40)
    $$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L}}{{\partial \beta \partial \alpha }} = \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} \frac{{x_{ist}}}{{\sigma _v}}\frac{{\tau _{ist}^{\kappa _{st}}\delta _{st}}}{{e^{\delta _{st}}}} \times S_{ist}.} \hfill \end{array}$$
    (41)
  4. 4.

    Adjustment of the Hessian for multi-step estimation

Following Murphy and Topel (2002), the adjusted standard error is given by,

$$\Sigma = R_2^{ - 1} + R_2^{ - 1}\left[ {R_3^\prime R_1^{ - 1}R_3 - R_4^\prime R_1^{ - 1}R_3 - R_3^\prime R_1^{ - 1}R_4} \right]R_2^{ - 1},$$
(42)
$$\begin{array}{l}R_1 = - E\frac{{\partial ^2lnL_1}}{{\partial \theta _1\partial \theta _1^\prime }},\\ R_2 = - E\frac{{\partial ^2lnL_2}}{{\partial \theta _2\partial \theta _2^\prime }},\\ R_3 = - E\frac{{\partial ^2lnL_2}}{{\partial \theta _1\partial \theta _2^\prime }},\\ R_4 = E\frac{{\partial lnL_1}}{{\partial \theta _1}}\left( {\frac{{\partial lnL_2}}{{\partial \theta _2}}} \right)^\prime ,\end{array}$$
(43)

where ln L1, and θ1 are the log-likelihood and the parameters from the first step, and the ln L2, and θ2 are the log-likelihood and the parameters from the second step. R1 and R2 can be obtained from the Hessian matrix from the conditional logit model and the second derivatives in Appendix C. As the log-likelihood for the first step is given by,

$${\mathrm{ln}}{\kern 1pt} L_1 = \mathop {\sum}\limits_t \left( {Z_{st}\gamma - {\mathrm{ln}}\mathop {\sum}\limits_{j \in At} {\kern 1pt} e^{Z_{jt}\gamma }} \right) + C,$$
(44)

where γ is the parameter in the first step, Zst is a set of explanatory variables for line-up s in time t, At is a set of possible line-ups in t, and C is the constant which does not depend on γ, the first derivative of the first selection model is given by,

$$\frac{{\partial {\kern 1pt} {\mathrm{ln}}{\kern 1pt} L_1}}{{\partial \gamma }} = \mathop {\sum}\limits_t \left( {Z_{st} - \mathop {\sum}\limits_{j \in At} {\kern 1pt} P_{jt}Z_{jt}} \right),$$
(45)

where Pjt is given by \(P_{jt} = {\textstyle{{e^{Z_{jt}\gamma }} \over {\mathop {\sum}\nolimits_{k \in At} {\kern 1pt} e^{m_{kt}\gamma }}}}\). Then R4 can be computed from the equation above and the first derivatives in Appendix C. For R3, using \({\textstyle{{\partial \delta _{st}} \over {\partial \gamma }}} = {\textstyle{{\partial F^{ - 1}\left( {P_{st}} \right)} \over {\partial \gamma }}} = {\textstyle{1 \over {e^{ - \delta _{st}}}}}{\mathrm{{\Pi}}}_{st}\) where \({\mathrm{{\Pi}}}_{st} = P_{ts}\left( {m_{ts} - \mathop {\sum}\nolimits_{j \in At} {\kern 1pt} P_{tj}m_{tj}} \right)\), we have,

$$\frac{{\partial {\kern 1pt} {\mathrm{ln}}{\kern 1pt} L_2}}{{\partial \gamma }} = - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} {\kern 1pt} {\mathrm{{\Pi}}}_{st}\frac{{\tau _{ist}^{\kappa _{st}}\left( {\alpha \xi _{ist}^\alpha - \kappa _{st}{\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \right)}}{{{\mathrm{\Psi }}_{ist}}}.$$
(46)

Then, the cross-partial derivatives are given by,

$$\begin{array}{l}\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L_2}}{{\partial \gamma \partial \lambda }} = \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} {\kern 1pt} {\mathrm{{\Pi}}}_{ts}\frac{{\left( {\mathop {\sum}\limits_{j \ne i \in s} {\kern 1pt} w_{tj}y_{tsj}} \right)}}{{\sigma _v}}\tau _{ist}^{\kappa _{st}}\\ \underbrace {\left\{ {{\textstyle{{\left( {\alpha \xi _{ist}^\alpha - \kappa _{st}{\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \right)\xi _{ist}} \over {{\mathrm{\Psi }}_{tsi}^2}}} + {\textstyle{{\alpha \kappa _{st}\eta \xi _{ist}^\alpha - \kappa _{st}\eta \left( {\kappa _{st}{\mathrm{\Phi }}_{ist}^{\kappa _{st}} - \alpha {\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \right) + \kappa _{st}\phi _{ist}^{\kappa _{st}} - \alpha \phi _{ist}^{\kappa _{st}}} \over {{\mathrm{\Psi }}_{tsi}}}}} \right\}}_{\left( {T_{ist}} \right)}.\end{array}$$
(47)
$$\begin{array}{l}\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L_2}}{{\partial \gamma \partial \eta }} = - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} {\kern 1pt} {\mathrm{{\Pi}}}_{ts}\tau _{ist}^{\kappa _{st}}\\ \left\{ {{\textstyle{{\left( {\alpha \xi _{ist}^\alpha - \kappa _{st}\Phi _{ist}^{\kappa _{st}}} \right)\xi _{ist}^\eta } \over {{\mathrm{\Psi }}_{tsi}^2}}} - \kappa _{st}{\textstyle{{\alpha \omega _{ist}^{\kappa _{st}}\xi _{ist}^\alpha - {\mathrm{\Phi }}_{ist}^{\kappa _{st}}\omega _{ist}^{\kappa _{st}}\kappa _{st} - \kappa _{st}\phi _{ist}^{\kappa _{st}} + \alpha \left( {2\phi _{ist}^{\kappa _{st}} + \omega _{ist}^{\kappa _{st}}{\mathrm{\Phi }}_{ist}^{\kappa _{st}} - \eta \kappa _{st}{\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \right)} \over {{\mathrm{\Psi }}_{tsi}}}}} \right\}\end{array}$$
(48)
$$\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L_2}}{{\partial \gamma \partial \sigma _v}} = \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} {\kern 1pt} {\mathrm{{\Pi}}}_{ts}\frac{{\mu _{ist}}}{{\sigma _v^2}}\tau _{ist}^{\kappa _{st}}T_{ist}.$$
(49)
$$\frac{{\partial ^2lnL_2}}{{\partial \gamma \partial \beta \prime }} = \mathop {\sum}\limits_t {\kern 1pt} \mathop {\sum}\limits_{i \in s} {\kern 1pt} {\mathrm{{\Pi}}}_{ts}\frac{{x_{ist}^\prime }}{{\sigma _v}}\tau _{ist}^{\kappa _{st}}T_{ist}.$$
(50)
$$\begin{array}{*{20}{l}} {\frac{{\partial ^2{\kern 1pt} {\mathrm{ln}}{\kern 1pt} L_2}}{{\partial \gamma \partial \alpha }}} \hfill & = \hfill & { - \mathop {\sum}\limits_t \mathop {\sum}\limits_{i \in s} {\kern 1pt} {\mathrm{{\Pi}}}_{ts}\tau _{ist}^{\kappa _{st}}\left\{ {\frac{{\tau _{ist}^{\kappa _{st}}\delta _{st}}}{{e^{\delta _{st}}}}\frac{{\left( {\alpha \xi _{ist}^\alpha - \kappa _{st}{\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \right)\xi _{ist}^\alpha }}{{{\mathrm{\Psi }}_{tsi}^2}}} \right.} \hfill \\ {} \hfill & {} \hfill & {\left. { + {\textstyle{{\xi _{ist}^\alpha \left( {1 - \alpha \omega _{ist}^{\kappa _{st}}\delta _{st}\eta } \right) + \delta _{st}\eta {\mathrm{\Phi }}_{ist}^{\kappa _{st}}\left( {\omega _{ist}^{\kappa _{st}}\kappa _{st} - \alpha \omega _{ist}^{\kappa _{st}} + \alpha \eta \kappa _{st}} \right) + \delta _{st}\eta \phi _{ist}^{\kappa _{st}}\left( {\kappa _{st} - 2\alpha } \right) - \delta {\mathrm{\Phi }}_{ist}^{\kappa _{st}}} \over {{\mathrm{\Psi }}_{tsi}}}}} \right\}.} \hfill \end{array}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horrace, W.C., Jung, H. Stochastic frontier models with network selectivity. J Prod Anal 50, 101–116 (2018). https://doi.org/10.1007/s11123-018-0537-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-018-0537-7

Keywords

JEL Codes

Navigation