Skip to main content
Log in

Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Leaf photosynthetic capacity (light-saturated net assimilation rate, AA) increases from bottom to top of plant canopies as the most prominent acclimation response to the conspicuous within-canopy gradients in light availability. Light-dependent variation in AA through plant canopies is associated with changes in key leaf structural (leaf dry mass per unit leaf area), chemical (nitrogen (N) content per area and dry mass, N partitioning between components of photosynthetic machinery), and physiological (stomatal and mesophyll conductance) traits, whereas the contribution of different traits to within-canopy AA gradients varies across sites, species, and plant functional types. Optimality models maximizing canopy carbon gain for a given total canopy N content predict that AA should be proportionally related to canopy light availability. However, comparison of model expectations with experimental data of within-canopy photosynthetic trait variations in representative plant functional types indicates that such proportionality is not observed in real canopies, and AA vs. canopy light relationships are curvilinear. The factors responsible for deviations from full optimality include stronger stomatal and mesophyll diffusion limitations at higher light, reflecting greater water limitations and more robust foliage in higher light. In addition, limits on efficient packing of photosynthetic machinery within leaf structural scaffolding, high costs of N redistribution among leaves, and limited plasticity of N partitioning among components of photosynthesis machinery constrain AA plasticity. Overall, this review highlights that the variation of AA through plant canopies reflects a complex interplay between adjustments of leaf structure and function to multiple environmental drivers, and that AA plasticity is limited by inherent constraints on and trade-offs between structural, chemical, and physiological traits. I conclude that models trying to simulate photosynthesis gradients in plant canopies should consider co-variations among environmental drivers, and the limitation of functional trait variation by physical constraints and include the key trade-offs between structural, chemical, and physiological leaf characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aasamaa K, Sõber A, Hartung W, Niinemets Ü (2004) Drought acclimation of two deciduous tree species of different layers in a temperate forest canopy. Trees 18:93–101

    Article  Google Scholar 

  • Alvino A, Centritto M, de Lorenzi F (1994) Photosynthesis response of sunlit and shade pepper (Capsicum annuum) leaves at different positions in the canopy under two water regimes. Aust J Plant Physiol 21:377–391

    Google Scholar 

  • Anten NPR (2005) Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann Bot 95:495–506

    Article  CAS  PubMed  Google Scholar 

  • Anten NPR (2016) Optimization and game theory in canopy models. In: Hikosaka K, Niinemets Ü, Anten NPR (eds) Canopy photosynthesis: from basics to applications. Advances in photosynthesis and respiration, vol 42. Springer, Berlin, pp 355–377

    Chapter  Google Scholar 

  • Anten NPR, Bastiaans L (2016) The use of canopy models to analyze light competition among plants. In: Hikosaka K, Niinemets Ü, Anten NPR (eds) Canopy photosynthesis: from basics to applications. Advances in photosynthesis and respiration, vol 42. Springer, Berlin, pp 379–398

    Chapter  Google Scholar 

  • Anten NPR, Schieving F, Werger MJA (1995) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia 101:504–513

    Article  CAS  PubMed  Google Scholar 

  • Anten NPR, Miyazawa K, Hikosaka K, Nagashima H, Hirose T (1998) Leaf nitrogen distribution in relation to leaf age and photon flux density in dominant and subordinate plants in dense stands of a dicotyledonous herb. Oecologia 113:314–324

    Article  CAS  PubMed  Google Scholar 

  • Anten NPR, Hirose T, Onoda Y, Kinugasa T, Kim HY, Okada M, Kobayashi K (2003) Elevated CO2 and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytol 161:459–471

    Article  PubMed  Google Scholar 

  • Araus JL, Sanchez-Bragado R, Vicente R (2021) Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream? J Exp Bot 72:3936–3955

    Article  CAS  PubMed  Google Scholar 

  • Bachofen C, D’Odorico P, Buchmann N (2020) Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192:323–339

    Article  PubMed  Google Scholar 

  • Badeck F-W (1995) Intra-leaf gradient of assimilation rate and optimal allocation of canopy nitrogen: a model on the implications of the use of homogeneous assimilation functions. Aust J Plant Physiol 22:425–439

    CAS  Google Scholar 

  • Baldocchi DD, Wilson KB, Gu L (2002) How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest—an assessment with the biophysical model CANOAK. Tree Physiol 22:1065–1077

    Article  CAS  PubMed  Google Scholar 

  • Bambach N, Paw UKT, Gilbert ME (2020) A dynamic model of RuBP-regeneration limited photosynthesis accounting for photoinhibition, heat and water stress. Agric Forest Meteorol 285–286

  • Battaglia MA, Mitchell RJ, Mou PP, Pecot SD (2003) Light transmittance estimates in a longleaf pine woodland. Forest Science 49:752–762

    Google Scholar 

  • Beckage B, Bucini G, Gross LJ, Platt WJ, Higgins SI, Fowler NL, Slocum MG, Farrior C (2020) Water limitation, fire, and savanna persistence. A conceptual model. In: Scogings PF, Sankaran M (eds) Savanna woody plants and large herbivores. Wiley, Hoboken, pp 643–659

    Google Scholar 

  • Bond BJ, Farnsworth BT, Coulombe RA, Winner WE (1999) Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance. Oecologia 120:183–192

    Article  PubMed  Google Scholar 

  • Bongers FJ, Douma JC, Iwasa Y, Pierik R, Evers JB, Anten NPR (2019) Variation in plastic responses to light results from selection in different competitive environments. A game theoretical approach using virtual plants. PLoS Comput Biol 15:e1007253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley TN (2021) Optimal carbon partitioning helps reconcile the apparent divergence between optimal and observed canopy profiles of photosynthetic capacity. New Phytol 230:2246–2260

    Article  CAS  PubMed  Google Scholar 

  • Buckley TN, Farquhar GD, Miller JM (2002) The mathematics of linked optimisation for water and nitrogen use in a canopy. Silva Fennica 36:639–669

    Article  Google Scholar 

  • Cano FJ, Sánchez-Gómez D, Rodríguez-Calcerrada J, Warren CR, Gil L, Aranda I (2013) Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. Plant Cell Environ 36:1961–1980

    Article  PubMed  Google Scholar 

  • Casella E, Ceulemans R (2002) Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within 3-year-old Populus clones under coppice culture. Tree Physiol 22:1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Ciganda V, Gitelson A, Schepers J (2008) Vertical profile and temporal variation of chlorophyll in maize canopy: quantitative “crop vigor” indicator by means of reflectance-based techniques. Agron J 100:1409–1417

    Article  CAS  Google Scholar 

  • Coble AP, Cavaleri MA (2014) Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest. Tree Physiol 34:146–158

    Article  CAS  PubMed  Google Scholar 

  • Coble AP, Cavaleri MA (2017) Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness. Tree Physiol 37:1337–1351

    Article  PubMed  Google Scholar 

  • Coble AP, VanderWall B, Mau A, Cavaleri MA (2016) How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Tree Physiol 36:1077–1091

    Article  CAS  PubMed  Google Scholar 

  • Coble AP, Fogel ML, Parker GG (2017) Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance. Tree Physiol 37:1415–1425

    Article  PubMed  Google Scholar 

  • Dominguez F, Cejudo FJ (2021) Chloroplast dismantling in leaf senescence. J Exp Bot 72:5905–5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driever SM, Simkin AJ, Alotaibi S, Fisk SJ, Madgwick PJ, Sparks CA, Jones HD, Lawson T, Parry MAJ, Raines CA (2017) Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos Trans R Soc Lond Ser B, p 372

    Google Scholar 

  • Ellsworth PV, Ellsworth PZ, Koteyeva NK, Cousins AB (2018) Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. New Phytol 219:66–76

    Article  CAS  PubMed  Google Scholar 

  • Evans JR (2021) Mesophyll conductance: walls, membranes and spatial complexity. New Phytol 229:1864–1876

    Article  CAS  PubMed  Google Scholar 

  • Faralli M, Cockram J, Ober E, Wall S, Galle A, Van Rie J, Raines C, Lawson T (2019) Genotypic, developmental and environmental effects on the rapidity of gs in wheat: impacts on carbon gain and water-use efficiency. Front Plant Sci 10:492

    Article  PubMed  PubMed Central  Google Scholar 

  • Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Philos Trans R Soc Lond Ser B 323:357–367

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Buckley TN, Miller JM (2002) Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica 36:625–637

    Article  Google Scholar 

  • Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56:341–347

    Article  CAS  PubMed  Google Scholar 

  • Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, Brunetti C, Centritto M (2016) Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiol Plant 157:54–68

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Clemente-Moreno MJ, Bota J, Brodribb TJ, Gago J, Mizokami Y, Nadal M, Perera-Castro AV, Roig-Oliver M, Sugiura D, Xiong D, Carriqui M (2021) Cell wall thickness and composition are involved in photosynthetic limitation. J Exp Bot 72:3971–3986

    Article  CAS  PubMed  Google Scholar 

  • Fliervoet LM, Werger JA (1984) Canopy structure and microclimate of two wet grassland communities. New Phytol 96:115–130

    Article  Google Scholar 

  • Frak E, Le Roux X, Millard P, Adam B, Dreyer E, Escuit C, Sinoquet H, Vandame M, Varlet-Grancher C (2002) Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration. J Exp Bot 53:2207–2216

    Article  CAS  PubMed  Google Scholar 

  • Gregory LM, McClain AM, Kramer DM, Pardo JD, Smith KE, Tessmer OL, Walker BJ, Ziccardi LG, Sharkey TD (2021) The triose phosphate utilization limitation of photosynthetic rate: out of global models but important for leaf models. Plant Cell Environ 44:3223–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutschick VP, Wiegel FW (1988) Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass. Am Nat 132:67–86

    Article  Google Scholar 

  • Hanba YT, Mori S, Lei TT, Koike T, Wada E (1997) Variations in leaf d13C along a vertical profile of irradiance in a temperate Japanese forest. Oecologia 110:253–261

    Article  CAS  PubMed  Google Scholar 

  • Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ 25:1021–1030

    Article  Google Scholar 

  • Hernandez GG, Winter K, Slot M (2020) Similar temperature dependence of photosynthetic parameters in sun and shade leaves of three tropical tree species. Tree Physiol 40:637–651

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K (2014) Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant Cell Environ 37:2077–2085

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K, Terashima I (1996) Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Funct Ecol 10:335–343

    Article  Google Scholar 

  • Hikosaka K, Anten NP, Borjigidai A, Kamiyama C, Sakai H, Hasegawa T, Oikawa S, Iio A, Watanabe M, Koike T, Nishina K, Ito A (2016) A meta-analysis of leaf nitrogen distribution within plant canopies. Ann Bot 118:239–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Werger MJA (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Werger MJA (1994) Photosynthetic capacity and nitrogen partitioning among species in the canopy of a herbaceous plant community. Oecologia 100:203–212

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Werger MJA (1995) Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76:466–474

    Article  Google Scholar 

  • Hirtreiter JN, Potts DL (2012) Canopy structure, photosynthetic capacity and nitrogen distribution in adjacent mixed and monospecific stands of Phragmites australis and Typha latifolia. Plant Ecol 213:821–829

    Article  Google Scholar 

  • Hollinger DY (1989) Canopy organization and foliage photosynthetic capacity in broad-leaved evergreen montane forest. Funct Ecol 3:53–62

    Article  Google Scholar 

  • Ishii HR, Cavaleri MA (2017) Canopy ecophysiology: exploring the terrestrial ecosystem frontier. Tree Physiol 37:1263–1268

    Article  PubMed  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulosebisphosphate concentration, pH and temperature. Planta 161:308–313

    Article  CAS  PubMed  Google Scholar 

  • Jucker T, Hardwick SR, Both S, Elias DMO, Ewers RM, Milodowski DT, Swinfield T, Coomes DA (2018) Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob Change Biol 24:5243–5258

    Article  Google Scholar 

  • Kitao M, Kitaoka S, Harayama H, Tobita H, Agathokleous E, Utsugi H (2018) Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Sci Rep 8:503

    Article  PubMed  PubMed Central  Google Scholar 

  • Kromdijk J, Glowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861

    Article  CAS  PubMed  Google Scholar 

  • Kull O, Kruijt B (1998) Leaf photosynthetic light response: a mechanistic model for scaling photosynthesis to leaves and canopies. Funct Ecol 12:767–777

    Article  Google Scholar 

  • Kull O, Niinemets Ü (1998) Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance. Funct Ecol 12:472–479

    Article  Google Scholar 

  • Le Roux X, Walcroft AS, Daudet FA, Sinoquet H, Chaves MM, Rodrigues A, Osorio L (2001) Photosynthetic light acclimation in peach leaves: importance of changes in mass:area ratio, nitrogen concentration, and leaf nitrogen partitioning. Tree Physiol 21:377–386

    Article  PubMed  Google Scholar 

  • LeCain D, Smith D, Morgan J, Kimball BA, Pendall E, Miglietta F (2015) Microclimatic performance of a free-air warming and CO2 enrichment experiment in windy Wyoming, USA. PLoS ONE 10:e0116834

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthews JSA, Vialet-Chabrand S, Lawson T (2018) Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. Plant Physiol 176:1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire JP, Mitchell RJ, Moser EB, Pecot SD, Gjerstad DH, Hedman CW (2001) Gaps in a gappy forest: plant resources, longleaf pine regeneration, and understory response to tree removal in longleaf pine savannas. Can J for Res 31:765–778

    Article  Google Scholar 

  • Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG (2002) Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ 25:343–357

    Article  Google Scholar 

  • Morales A, Kaiser E (2020) Photosynthetic acclimation to fluctuating irradiance in plants. Front Plant Sci 11:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Niinemets Ü (1999) Research review. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol 144:35–47

    Article  Google Scholar 

  • Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469

    Article  Google Scholar 

  • Niinemets Ü (2007) Photosynthesis and resource distribution through plant canopies. Plant, Cell Environ 30:1052–1071

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü (2012) Commentary. Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints. Tree Physiol 32:505–509

    Article  PubMed  Google Scholar 

  • Niinemets Ü (2016a) Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. J Plant Res 129:313–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Niinemets Ü (2016b) Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. In: Hikosaka K, Niinemets Ü, Anten NPR (eds) Canopy photosynthesis: from basics to applications. Advances in photosynthesis and respiration, vol 42. Springer, Berlin, pp 101–141

    Chapter  Google Scholar 

  • Niinemets Ü (2020) Leaf trait plasticity and evolution in different plant functional types. Annu Plant Rev 3:473–522

    Article  Google Scholar 

  • Niinemets Ü, Anten NPR (2009) Packing the photosynthesis machinery: from leaf to canopy. In: Laisk A, Nedbal L, Govindjee S (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, vol 29. Springer, Berlin, pp 363–399

    Chapter  Google Scholar 

  • Niinemets Ü, Keenan TF (2012) Measures of light in studies on light-driven plant plasticity in artificial environments. Front Plant Sci 3:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Niinemets Ü, Kull O (1998) Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol 18:467–479

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Kull O (1999) Amplification of photoinhibition of photosynthetic electron transport by opposite gradients in light and water availability in a deciduous forest canopy. In: Kellomäki S, Kull O, Linder S (eds) IUFRO workshop on canopy dynamics and forest management - a missing link? August 1–11, 1999, Estonia, Finland and Sweden. Workshop abstracts. p 3, IUFRO - IGBP/GCTE, Joensuu.

  • Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ 20:845–866

    Article  Google Scholar 

  • Niinemets Ü, Valladares F (2004) Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biol 6:254–268

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Bilger W, Kull O, Tenhunen JD (1998a) Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant Cell Environ 21:1205–1218

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (1998b) An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiol 18:681–696

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (1999a) Variability in leaf morphology and chemical composition as a function of canopy light environment in co-existing trees. Int J Plant Sci 160:837–848

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Sõber A, Kull O, Hartung W, Tenhunen JD (1999b) Apparent controls on leaf conductance by soil water availability and via light-acclimation of foliage structural and physiological properties in a mixed deciduous, temperate forest. Int J Plant Sci 160:707–721

    Article  Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (2004a) Within canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. Plant Cell Environ 27:293–313

    Article  CAS  Google Scholar 

  • Niinemets Ü, Sonninen E, Tobias M (2004b) Canopy gradients in leaf intercellular CO2 mole fractions revisited: interactions between leaf irradiance and water stress need consideration. Plant Cell Environ 27:569–583

    Article  Google Scholar 

  • Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2006) Complex adjustments of photosynthetic capacity and internal mesophyll conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 29:1159–1178

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Copolovici L, Hüve K (2010) High within-canopy variation in isoprene emission potentials in temperate trees: implications for predicting canopy-scale isoprene fluxes. J Geophys Res 115:G04029

    Google Scholar 

  • Niinemets Ü, Keenan TF, Hallik L (2015) Tansley review. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Go C-S, Miyazawa S-I, Terashima I, Ueda S, Yoshinari T (2001) Costs of protein turnover and carbohydrate export in leaves of sun and shade species. Aust J Plant Physiol 28:37–47

    CAS  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2003) Does leaf photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927

    Article  Google Scholar 

  • Onoda Y, Schieving F, Anten NP (2008) Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann Bot 101:727–736

    Article  PubMed  PubMed Central  Google Scholar 

  • Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M (2017) Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol 214:1447–1463

    Article  CAS  PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MA, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WF, von Caemmerer S, Weber AP, Yeates TO, Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112:8529–8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pao YC, Chen TW, Moualeu-Ngangue DP, Stützel H (2019) Environmental triggers for photosynthetic protein turnover determine the optimal nitrogen distribution and partitioning in the canopy. J Exp Bot 70:2419–2434

    Article  CAS  PubMed  Google Scholar 

  • Pearcy RW, Gross LJ, He D (1997) An improved dynamic model of photosynthesis for estimation of carbon gain in sunfleck light regimes. Plant Cell Environ 20:411–424

    Article  Google Scholar 

  • Peltoniemi M, Duursma R, Medlyn B (2012) Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiol 32:510–519

    Article  CAS  PubMed  Google Scholar 

  • Pesaresi P, Hertle A, Pribil M, Schneider A, Kleine T, Leister D (2010) Optimizing photosynthesis under fluctuating light: the role of the Arabidopsis STN7 kinase. Plant Signal Behav 5:21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pons TL, van Rijnberk H, Scheurwater I, van der Werf A (1993) Importance of the gradient in photosynthetically active radiation in a vegetation stand for leaf nitrogen allocation in two monocotyledons. Oecologia 95:416–424

    Article  PubMed  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Tansley review. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Poorter H, Niinemets Ü, Ntagkas N, Siebenkäs A, Mäenpää M, Matsubara S, Pons T (2019) Tansley review. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol 223:1073–1105

    Article  CAS  PubMed  Google Scholar 

  • Rambo TR, North MP (2008) Spatial and temporal variability of canopy microclimate in a Sierra Nevada Riparian Forest. Northwest Sci 82:259–268

    Article  Google Scholar 

  • Rasulov B, Talts E, Niinemets Ü (2016) Spectacular oscillations in plant isoprene emission under transient conditions explain the enigmatic CO2 response. Plant Physiol 172:2275–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retkute R, Smith-Unna SE, Smith RW, Burgess AJ, Jensen OE, Johnson GN, Preston SP, Murchie EH (2015) Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light? J Exp Bot 66:2437–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey-Sánchez AC, Slot M, Posada JM, Kitajima K (2016) Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest. Climate Res 71:75–89

    Article  Google Scholar 

  • Ross J, Sulev M (2000) Sources of errors in measurements of PAR. Agric for Meteorol 100:103–125

    Article  Google Scholar 

  • Salter WT, Merchant A, Trethowan RM, Richards RA, Buckley TN (2020) Wide variation in the suboptimal distribution of photosynthetic capacity in relation to light across genotypes of wheat. AoB Plants 12:plaa039

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvatori N, Carteni F, Giannino F, Alberti G, Mazzoleni S, Peressotti A (2022) A system dynamics approach to model photosynthesis at leaf level under fluctuating light. Front Plant Sci 12:787877

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Lorenzo A, Calbó J, Wild M (2013) Global and diffuse solar radiation in Spain: building a homogeneous dataset and assessing their trends. Global Planet Change 100:343–352

    Article  Google Scholar 

  • Sands PJ (1995) Modelling canopy production. I. Optimal distribution of photosynthetic resources. Aust J Plant Physiol 22:593–601

    CAS  Google Scholar 

  • Savitch LV, Gray GR, Huner NPA (1997) Feedback-limited photosynthesis and regulation of sucrose-starch accumulation during cold acclimation and low-temperature stress in a spring and winter wheat. Planta 201:18–26

    Article  CAS  Google Scholar 

  • Schieving F, Pons TL, Werger MJA, Hirose T (1992) The vertical distribution of nitrogen and photosynthetic activity at different plant densities in Carex acutiformis. Plant Soil 14:9–17

    Article  Google Scholar 

  • Schmiege SC, Griffin KL, Boelman NT, Vierling LA, Bruner SG, Min E, Maguire AJ, Jensen J, Eitel JUH (2023) Vertical gradients in photosynthetic physiology diverge at the latitudinal range extremes of white spruce. Plant Cell Environ 46:45–63

    Article  CAS  PubMed  Google Scholar 

  • Scholes RJ, Frost PGH, Tian Y (2004) Canopy structure in savannas along a moisture gradient on Kalahari sands. Glob Change Biol 10:292–302

    Article  Google Scholar 

  • Sellin A, Kupper P (2005) Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch. Oecologia 142:388–397

    Article  PubMed  Google Scholar 

  • Sellin A, Õunapuu E, Kupper P (2008) Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula). Physiol Plant 134:412–420

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Stitt M, Heineke D, Gerhardt R, Raschke K, Heldt HW (1986) Limitation of photosynthesis by carbon metabolism. II. O2-insensitive CO2 uptake results from limitation of triose phosphate. Plant Physiol 81:1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehy JE, Windram A, Peacock JM (1977) Microclimate, canopy structure and photosynthesis in canopies of three contrasting temperate forage grasses. II. Microclimate and canopy structure. Ann Bot 41:579–592

    Article  Google Scholar 

  • Shiraki A, Azuma W, Kuroda K, Ishii HR (2017) Physiological and morphological acclimation to height in cupressoid leaves of 100-year-old Chamaecyparis obtusa. Tree Physiol 37:1327–1336

    PubMed  Google Scholar 

  • Slattery RA, VanLoocke A, Bernacchi CJ, Zhu XG, Ort DR (2017) Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front Plant Sci 8:549

    Article  PubMed  PubMed Central  Google Scholar 

  • Terashima I, Miyazawa S-I, Hanba YT (2001) Why are sun leaves thicker than shade leaves? - Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105

    Article  CAS  Google Scholar 

  • Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Tosens T, Vislap V, Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64:2269–2281

    Article  PubMed  PubMed Central  Google Scholar 

  • Tosens T, Niinemets Ü, Vislap V, Eichelmann H, Castro-Díez P (2012) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ 35:839–856

    Article  CAS  PubMed  Google Scholar 

  • Townsend AJ, Retkute R, Chinnathambi K, Randall JWP, Foulkes J, Carmo-Silva E, Murchie EH (2018) Suboptimal acclimation of photosynthesis to light in wheat canopies. Plant Physiol 176:1233–1246

    Article  CAS  PubMed  Google Scholar 

  • Uemura A, Ishida A, Nakano T, Terashima I, Tanabe H, Matsumoto Y (2000) Acclimation of leaf characteristics of Fagus species to previous-year and current-year solar irradiances. Tree Physiol 20:945–951

    Article  CAS  PubMed  Google Scholar 

  • Vega C, González G, Bahamonde HA, Valbuena-Carabaña M, Gil L, Fernández V (2020) Effect of irradiation and canopy position on anatomical and physiological features of Fagus sylvatica and Quercus petraea leaves. Plant Physiol Biochem 152:232–242

    Article  CAS  PubMed  Google Scholar 

  • Vialet-Chabrand S, Matthews JS, Simkin AJ, Raines CA, Lawson T (2017) Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol 173:2163–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinod N, Slot M, McGregor IR, Ordway EM, Smith MN, Taylor TC, Sack L, Buckley TN, Anderson-Teixeira KJ (2023) Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. New Phytol 237:22–47

    Article  PubMed  Google Scholar 

  • Vishwakarma C, Krishna GK, Kapoor RT, Mathur K, Lal SK, Saini RP, Yadava P, Chinnusamy V (2023) Bioengineering of canopy photosynthesis in rice for securing global food security: a critical review. Agronomy 13:489

    Article  CAS  Google Scholar 

  • Walcroft A, Le Roux X, Diaz-Espejo A, Dones N, Sinoquet H (2002) Effects of crown development on leaf irradiance, leaf morphology and photosynthetic capacity in a peach tree. Tree Physiol 22:929–938

    Article  PubMed  Google Scholar 

  • Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR (2018) Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiol 176:1215–1232

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Adams MA (2001) Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ 24:597–609

    Article  CAS  Google Scholar 

  • Williams CB, Reese Naesborg R, Dawson TE (2017) Coping with gravity: the foliar water relations of giant sequoia. Tree Physiol 37:1312–1326

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas E, Villar R (2004) The world-wide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Fisher R, Wullschleger SD, Wilson CJ, Cai M, McDowell NG (2012) Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS ONE 7:e37914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JT, Preiser AL, Li Z, Weise SE, Sharkey TD (2016) Triose phosphate use limitation of photosynthesis: short-term and long-term effects. Planta 243:687–698

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Schapendonk A, Struik PC (2019) Exploring the optimum nitrogen partitioning to predict the acclimation of C3 leaf photosynthesis to varying growth conditions. J Exp Bot 70:2435–2447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of ÜN on plant canopies and improvement of plant photosynthesis has been supported by the Estonian Research Council, European Regional Development Fund through the Center of Excellence EcolChange and by European Commission (Horizon 2020 Project GAIN4CROPS, Grant Agreement 862087). I thank the organizers of the 18th International Congress on Photosynthesis Research (Dunedin, New Zealand, July 31–August 5, 2022) for the opportunity to present this analysis.

Funding

Funding was provided by Horizon 2020 Framework Programme (GAIN4CROPS, Grant Agreement 862087) and European Regional Development Fund (Center of Excellence EcolChange).

Author information

Authors and Affiliations

Authors

Contributions

ÜN wrote the whole MS

Corresponding author

Correspondence to Ülo Niinemets.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niinemets, Ü. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. Photosynth Res 158, 131–149 (2023). https://doi.org/10.1007/s11120-023-01043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-023-01043-9

Keywords

Navigation