Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 42))

Summary

The gradient of leaf traits in a canopy from sunlit upper regions to shaded lower ones is regulated in response to the density of its leaf area. The gradients of environmental factors act as signals for the regulation. The result is improved resource use efficiency for carbon gain at the whole plant level. Herbaceous species with relatively fast leaf turnover typically grow new leaves at the top in high light that are subsequently progressively shaded in developing dense canopies. Export of resources associated with photosynthetic capacity accompanies the progressive shading, later on followed by degradation of light harvesting components when senescence is induced. The red:far-red ratio of the light gradient is involved in the reallocation of resources and the induction of leaf senescence, but the irradiance component of the light gradient dominates the canopy effect. It impacts a multitude of physiological processes. Their effect can operate locally such as perception by photoreceptors and excitation pressure implicated in chloroplast organization. Other effects impact processes operating at the whole plant level such as the distribution of signaling compounds in the transpiration stream and the supply of assimilates to developing young leaves. These systemically operating pathways are at the basis of a coordinated response of plants to the shading effect in a canopy gradient, which is different from whole plant shading. The available evidence for mechanisms involved in the regulation of leaf traits in canopies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA :

Abscisic acid

A day :

Daily net carbon gain

A sat :

Light saturated rate of photosynthesis per unit leaf area at atmospheric CO2 concentration

A chl :

A sat per unit chlorophyll

Chl a/b:

Molar chlorophyll a/b ratio

ChlLA :

Chlorophyll content per unit leaf area

CKs:

Cytokinins

FR:

Far-red radiation (730 nm)

J max :

Electron transport capacity

LAI :

Leaf area index

LHCII:

Light harvesting complex associated with PSII

LMA:

Leaf mass per unit area

N LA :

Nitrogen per unit leaf area

N DM :

Nitrogen per unit leaf mass

PAR :

Photosynthetically active radiation

PPFD:

Photosynthetic photon flux density

PSI :

Photosystem I

PSII :

Photosystem I I

R:

Red light (660 nm)

R:FR:

Red:far-red quantum flux ratio

ROS:

Reactive oxygen species

V cmax :

Carboxylation capacity

References

  • Aasamaa K, Sober A, Hartung W, Niinemets Ü (2002) Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees. Tree Physiol 22:267–276

    Article  PubMed  CAS  Google Scholar 

  • Ackerly DD (1992) Light, leaf age, and leaf nitrogen concentration in a tropical vine. Oecologia 89:596–600

    Article  Google Scholar 

  • Ackerly DD (1996) Canopy structure and dynamics: integration of growth processes in tropical pioneer trees. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical Forest Plant Ecophysiology. Chapman & Hall, New York, pp 619–658

    Chapter  Google Scholar 

  • Ackerly DD, Bazzaz FA (1995) Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree. Oecologia 101:289–298

    Article  Google Scholar 

  • Anderson JM, Chow WS, Park YI (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    Article  PubMed  CAS  Google Scholar 

  • Anten NPR (2002) Evolutionarily stable leaf area production in plant populations. J Theor Biol 217:15–32

    Article  PubMed  Google Scholar 

  • Anten NPR (2005) Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann Bot 95:495–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anten NPR, Schieving F, Medina E, Werger MJA, Schuffelen P (1995) Optimal leaf area indices in C3 and C4 mono- and dicotyledonous species at low and high nitrogen availability. Physiol Plant 95:541–550

    Article  CAS  Google Scholar 

  • Anten NPR, Miyazawa K, Hikosaka K, Nagashima H, Hirose T (1998) Leaf nitrogen distribution in relation to leaf age and photon flux density in dominant and subordinate plants in dense stands of a dicotyledonous herb. Oecologia 113:314–324

    Article  Google Scholar 

  • Anten NPR, Hikosaka K, Hirose T (2000) Nitrogen utilisation and the photosynthetic system. In: Marshall B, Roberts JA (eds) Leaf Development and Canopy Growth. Sheffield Academic Press, Boca Raton, pp 171–203

    Google Scholar 

  • Araya T, Noguchi K, Terashima I (2008) Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. Plant Cell Environ 31:50–61

    Google Scholar 

  • Baena-Gonzalez E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauerle WL, Bowden JD, Wang GG (2007) The influence of temperature on within-canopy acclimation and variation in leaf photosynthesis: spatial acclimation to microclimate gradients among climatically divergent Acer rubrum L. genotypes. J Exp Bot 58:3285–3298

    Article  PubMed  CAS  Google Scholar 

  • Biswal UC, Biswal B (1984) Photocontrol of leaf senescence. Photochem Photobiol 39:875–879

    Article  CAS  Google Scholar 

  • Boonman A, Anten NPR, Dueck TA, Jordi WJRM, Van der Werf A, Voesenek LACJ, Pons TL (2006) Functional significance of shade-induced leaf senescence in dense canopies: an experimental test using transgenic tobacco. Am Nat 168:597–607

    Article  PubMed  Google Scholar 

  • Boonman A, Prinsen E, Gilmer F, Schurr U, Peeters AJM, Voesenek LACJ, Pons TL (2007) Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol 143:1841–1852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boonman A, Prinsen E, Voesenek LACJ, Pons TL (2009) Redundant roles of photoreceptors and cytokinins in regulating photosynthetic acclimation to canopy density. J Exp Bot 60:1179–1190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brooks JR, Hinckley TM, Sprugel DG (1994) Acclimation responses of mature Abies amabilis sun foliage to shading. Oecologia 100:316–324

    Article  Google Scholar 

  • Brouwer B, Ziolkowska A, Bagard M, Keech O, Gardestrom P (2012) The impact of light intensity on shade-induced leaf senescence. Plant Cell Environ 35:1084–1098

    Article  PubMed  Google Scholar 

  • Brouwer B, Gardestrom P, Keech O (2014) In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. J Exp Bot 65:4037–4049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, …, Leaver CJ (2005) Comparative Transcriptome Analysis Reveals Significant Differences in Gene Expression and Signalling Pathways Between Developmental and Dark/Starvation-induced Senescence in Arabidopsis. Plant J 42:567–585

    Google Scholar 

  • Buchmann N, Guehl JM, Barigah TS, Ehleringer JR (1997) Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rain forest (French Guiana). Oecologia 110:120–131

    Article  Google Scholar 

  • Buckley TN, Cescatti A, Farquhar GD (2013) What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism? Plant Cell Environ 36:1547–1563

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Sanchez RA, Yanovsky MJ (1997) The function of phytochrome A. Plant Cell Environ 20:813–819

    Article  CAS  Google Scholar 

  • Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in de-etiolation in Arabidopsis. Plant Physiol 104:339–347

    PubMed  PubMed Central  CAS  Google Scholar 

  • Coupe SA, Palmer BG, Lake JA, Overy SA, Oxborough K, Woodward FI, Gray JE, Quick WP (2006) Systemic signalling of environmental cues in Arabidopsis leaves. J Exp Bot 57:329–341

    Article  PubMed  CAS  Google Scholar 

  • de Wit CT (1965) Photosynthesis of leaf canopies. Agric Res Rep 663:1–56

    Google Scholar 

  • de Wit M, Pierik R (2016) Photomorphogenesis and photoreceptors. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 171–186

    Chapter  Google Scholar 

  • Degreef J, Butler WL, Roth TF, Frederic H (1971) Control of senescence in Marchantia by phytochrome. Plant Physiol 48:407–412

    Article  CAS  Google Scholar 

  • Esrich W, Burchardt R, Essiahmah S (1989) The induction of sun and shade leaves of European beech (Fagus sylvatica L.): anatomical studies. Trees 3:1–10

    Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Evans JR (1993) Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy II. Stability through time and comparison with a theoretical optimum. Aust J Plant Physiol 20:69–82

    Article  CAS  Google Scholar 

  • Evans JR, Seemann JR (1989) The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. In: Briggs W (ed) Towards a Broad Understanding of Photosynthesis. Alan R. Liss, New York, pp 183–205

    Google Scholar 

  • Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Philos Trans R Soc Lond B-Biol Sci 323:357–367

    Article  CAS  Google Scholar 

  • Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56:341–347

    Article  Google Scholar 

  • Field CB, Mooney HA (1986) The photosynthesis – nitrogen relationship in wild plant. In: Givnish TJ (ed) On the Economy of Plant Form and Function. Cambridge University Press, New York/Cambridge, pp 25–55

    Google Scholar 

  • Flores S, Tobin EM (1988) Cytokinin modulation of LCHP mRNA levels: the involvement of post-transcriptional regulation. Plant Mol Biol 11:409–415

    Article  PubMed  CAS  Google Scholar 

  • Frak E, Le Roux X, Millard P, Dreyer E, Jaouen G, Saint-Joanis B, Wendler R (2001) Changes in total leaf nitrogen and partitioning, of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant Cell Environ 24:1279–1288

    Article  CAS  Google Scholar 

  • Frak E, Le Roux X, Millard P, Adam B, Dreyer E, Escuit C, Sinoquet H, …, Varlet-Grancher C (2002) Spatial Distribution of Leaf Nitrogen and Photosynthetic Capacity Within the Foliage of Individual Trees: disentangling the Effects of Local Light Quality, Leaf Irradiance, and Transpiration. J Exp Bot 53:2207–2216

    Google Scholar 

  • Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating point in C3 plants. Plant Cell Environ 22:1337–1349

    Article  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Goudriaan J (2016) Light distribution. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Grindlay DJC (1997) Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area. J Agric Sci 128:377–396

    Article  Google Scholar 

  • Guiamet JJ, Willemoes JG, Montaldi ER (1989) Modulation of progressive leaf senescence by the red:far-red ratio of incident light. Bot Gaz 150:148–151

    Article  Google Scholar 

  • Gutschick VP (2016) Leaf energy balance: basics, and modeling from leaves to Canopies. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 23–58

    Chapter  Google Scholar 

  • Hibberd JM, Quick WP (2002) Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415:451–454

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K (2003) A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency. Am Nat 162:149–164

    Article  PubMed  Google Scholar 

  • Hikosaka K, Terashima I, Katoh S (1994) Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Oecologia 97:451–457

    Article  Google Scholar 

  • Hikosaka K, Murakami A, Hirose T (1999) Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis temperature acclimation of an evergreen tree, Quercus myrsinaefolia. Plant Cell Environ 22:841–849

    Article  CAS  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Werger MJA (1987a) Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solidago altissima stand. Physiol Plant 70:215–222

    Article  CAS  Google Scholar 

  • Hirose T, Werger MJA (1987b) Maximising daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526

    Article  Google Scholar 

  • Hirose T, Werger MJA, Pons TL, Van Rheenen JWA (1988) Canopy structure and leaf nitrogen distribution in a stand of Lysimachia vulgaris L. as influenced by stand density. Oecologia 77:145–150

    Article  Google Scholar 

  • Hirose T, Werger MJA, Van Rheenen WA (1989) Canopy development and leaf nitrogen distribution in a stand of Carex acutiformis. Ecology 70:1610–1618

    Article  Google Scholar 

  • Hollinger DY (1996) Optimality and nitrogen allocation in a tree canopy. Tree Physiol 16:627–634

    Article  PubMed  Google Scholar 

  • Hüner NPA, Oquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Hüner NPA, Bode R, Dahal K, Hollis L, Rosso D, Krol M, Ivanov AG (2012) Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Front Plant Sci 3:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jameson PE, Letham DS, Zhang R, Parker CW, Badenoch-Jones J (1987) Cytokinin translocation and metabolism in Lupin species. I. Zeatin Riboside introduced into the xylem at the base of Lupinus angustifolius stems. Aust J Plant Physiol 14:695–718

    Article  CAS  Google Scholar 

  • Jiang CD, Wang X, Gao HY, Shi L, Chow WS (2011) Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiol 155:1416–1424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, de Visser R, van Rhijn JA, …, Amasino RM (2000) Increased Cytokinin Levels in Transgenic PSAG12-IPT Tobacco Plants have Large Direct and Indirect Effects on Leaf Senescence, Photosynthesis and N Partitioning. Plant Cell Environ 23:279–289

    Google Scholar 

  • Kitajima K, Mulkey SS, Wright SJ (2005) Variation in crown light utilization characteristics among tropical canopy trees. Ann Bot 95:535–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Krapp A, Hofmann B, Schafer C, Stitt M (1993) Regulation of the expression of Rbcs and other photosynthetic genes by carbohydrates – a mechanism for the sink regulation of photosynthesis. Plant J 3:817–828

    Article  CAS  Google Scholar 

  • Kruijt B, Lloyd J, Grace J, McIntyre JA, Farquhar GD, Miranda AC, McCracken P (1996) Sources and sinks of CO2 in Rondonia tropical rainforest. In: Gash JHC, Nobr CA, Roberts JM, Victoria RL (eds) Amazonian Deforestation and Climate. Wiley, Chichester, pp 331–351

    Google Scholar 

  • Kull O (2002) Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133:267–279

    Article  Google Scholar 

  • Kull O, Kruijt B (1999) Acclimation of photosynthesis to light a mechanistic approach. Funct Ecol 13:24–36

    Article  Google Scholar 

  • Kull O, Koppel A, Noormets A (1998) Seasonal changes in leaf nitrogen pools in two Salix species. Tree Physiol 18:45–51

    Article  PubMed  Google Scholar 

  • Kusnetsov VV, Oelmuller R, Sarwat MI, Porfirova SA, Cherepneva GN, Herrmann RG, Kulaeva ON (1994) Cytokinins, abscisic acid and light affect accumulation of chloroplast proteins in Lupinus luteus cotyledons without notable effect on staedy-state mRNA levels. Planta 194:318–327

    Article  CAS  Google Scholar 

  • Lake JA, Quick WP, Beerling DJ, Woodward FI (2001) Plant development – signals from mature to new leaves. Nature 411:154

    Article  PubMed  CAS  Google Scholar 

  • Leopold AC, Kawase M (1964) Benzyladenine on bean leaf growth and senescence. Amer J Bot 51:294–298

    Article  CAS  Google Scholar 

  • Li Q, Bettany AJE, Donnison I, Griffiths CM, Thomas H, Scott IM (2000) Characterisation of a cysteine protease cDNA from Lolium multiflorum leaves and its expression during senescence and cytokinin treatment. Biochim Biophys Acta 1492:233–236

    Article  PubMed  CAS  Google Scholar 

  • Matthyse AG, Scott TK (1982) Functions of hormones at the whole plant level of organisation. In: Pirson IA, Zimmerman MH (eds) Encyclopedia of Plant Physiology, vol 10, Hormonal regulation of development. Springer, Berlin, pp 219–235

    Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, …, Van Breusegem F (2011) ROS Signaling: the New Wave? Trends Plant Sci 16:300–309

    Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengeselschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52. Translated as Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567

    Google Scholar 

  • Mooney HA, Gulmon SL (1979) Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in Plant Population Biology. Columbia University Press, New York, pp 316–337

    Chapter  Google Scholar 

  • Mothes K, Engelbrecht L (1963) On the activity of a kinetin-like root factor. Life Sci 2:852–857

    Article  CAS  Google Scholar 

  • Mullineaux PM, Karpinski S, Baker NR (2006) Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol 141:346–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niinemets Ü (1999) Components of leaf dry mass per area thickness and density alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol 144:35–47

    Article  Google Scholar 

  • Niinemets Ü (2007) Photosynthesis and resource distribution through plant canopies. Plant Cell Environ 30:1052–1071

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü (2010) A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res 25:693–714

    Article  Google Scholar 

  • Niinemets Ü (2012) Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints. Tree Physiol 32:505–509

    Article  PubMed  Google Scholar 

  • Niinemets Ü (2016) Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications, Berlin. Springer, Berlin, pp 101–141

    Chapter  Google Scholar 

  • Niinemets Ü, Anten NPR (2009) Packing the photosynthetic machinery: from leaf to canopy. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Springer, Netherlands, pp 363–399

    Chapter  Google Scholar 

  • Niinemets Ü, Oja V, Kull O (1999) Shape of leaf photosynthetic electron transport versus temperature response curve Is not constant along canopy light gradients in temperate deciduous trees. Plant Cell Environ 22:1497–1513

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kollist H, Garcia-Plazaola JI, Hernandez A, Becerril JM (2003) Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate trees? Plant Cell Environ 26:1787–1801

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (2004) Within-canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. Plant Cell Environ 27:293–313

    Article  CAS  Google Scholar 

  • Niinemets Ü, Keenan TF, Hallik L (2015) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993 doi:10.1111/nph.13096

    Google Scholar 

  • Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci U S A 101:8039–8044

    Article  PubMed  PubMed Central  Google Scholar 

  • Oikawa S, Hikosaka K, Hirose T (2006) Leaf lifespan and lifetime carbon balance of individual leaves in a stand of an annual herb, Xanthium canadense. New Phytol 172:104–116

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Nishi Y, Watanabe A, Terashima I (2001) Possible mechanisms of adaptive leaf senescence. Plant Biol 3:234–243

    Article  CAS  Google Scholar 

  • Peltoniemi MS, Duursma RA, Medlyn BE (2012) Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiol 32:510–519

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Whitelam GC, Voesenek LACJ, de Kroon H, Visser EJW (2004) Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling. Plant J 38:310–319

    Article  PubMed  CAS  Google Scholar 

  • Pons TL (2012) Interaction of temperature and irradiance effects on photosynthetic acclimation in two accessions of Arabidopsis thaliana. Photosynth Res 113:207–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pons TL, Bergkotte M (1996) Nitrogen allocation in response to partial shading of a plant: possible mechanisms. Physiol Plant 98:571–577

    Article  CAS  Google Scholar 

  • Pons TL, de Jong-van Berkel YEM (2004) Species-specific Variation in the Importance of the spectral quality gradient in canopies as a signal for photosynthetic resource partitioning. Ann Bot 94:725–732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pons TL, Jordi W (1998) Induction of leaf senescence and shade acclimation in leaf canopies – variation with leaf longevity. In: Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences. Backhuys Publishers, Leiden, pp 121–137

    Google Scholar 

  • Pons TL, Pearcy RW (1994) Nitrogen reallocation and photosynthetic acclimation in response to partial shading in soybean plants. Physiol Plant 92:636–644

    Article  CAS  Google Scholar 

  • Pons TL, van der Toorn J (1988) Establishment of Plantago lanceolata L. and Plantago major L. among grass. I Significance of light for germination. Oecologia 75:394–399

    Article  Google Scholar 

  • Pons TL, Schieving F, Hirose T, Werger MJA (1989) Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris. In: Lambers H, Cambridge ML, Konings H, Pons TL (eds) Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. SPB Publishing, The Hague, pp 175–186

    Google Scholar 

  • Pons TL, Van Rijnberk H, Scheurwater I, Van der Werf A (1993) Importance of the gradient in photosynthetically active radiation in a vegetation stand for leaf nitrogen allocation in two monocotyledons. Oecologia 95:416–424

    Article  Google Scholar 

  • Pons TL, Jordi W, Kuiper D (2001) Acclimation of plants to light gradients in leaf canopies: evidence for a possible role for cytokinins transported in the transpiration stream. J Exp Bot 52:1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Pons TL, Anten NPR (2004) Is plasticity in partitioning of photosynthetic resources between and within leaves important for whole-plant carbon gain in canopies? Funct Ecol 18:802–811

    Google Scholar 

  • Prado K, Maurel C (2013) Regulation of leaf hydraulics: from molecular to whole plant levels. Front Plant Sci 4:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rochaix JD (2011) Regulation of photosynthetic electron transport. Biochem Biophys Acta 1807:375–383

    PubMed  CAS  Google Scholar 

  • Rousseaux MC, Hall AJ, Sánchez RA (1996) Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower. Physiol Plant 96:217–224

    Article  CAS  Google Scholar 

  • Rousseaux MC, Ballaré CL, Jordan ET, Vierstra RD (1997) Directed overexpression of PHYA locally suppresses stem elongation and leaf senescence responses to far-red radiation. Plant Cell Environ 20:1551–1558

    Article  CAS  Google Scholar 

  • Rousseaux MC, Hall AJ, Sanchez RA (2000) Basal leaf senescence in a sunflower (Helianthus annuus) canopy: responses to increased R/FR ratio. Physiol Plant 110:477–482

    Article  CAS  Google Scholar 

  • Roy J, Thiebaut B, Watson MA (1986) Physiological and anatomical consequences of morphogenetic polymorphism: leaf response to light intensity in young beech trees (Fagus sylvatica L.). In: Naturalia Monspeliensia – Colloque International sur l’Arbre, pp 431–449

    Google Scholar 

  • Schieving F, Pons TL, Werger MJA, Hirose T (1992) The vertical distribution of nitrogen and photosynthetic activity at different plant densities in Carex acutiformis. Plant Soil 14:9–17

    Google Scholar 

  • Singh S, Letham DS, Palni LMS (1992) Cytokinin biochemistry in relation to leaf senescence.8. translocation, metabolism and biosynthesis of cytokinins in relation to sequential leaf senescence of tobacco. Physiol Plant 86:398–406

    Article  CAS  Google Scholar 

  • Smeekens S, Ma JK, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    Article  PubMed  CAS  Google Scholar 

  • Smith H, Whitelam GC (1997) The shade avoidance syndrome: Multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840–844

    Article  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Araya T, Miyazawa S, Sone K, Yano S (2005) Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Ann Bot 95:507–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets Ü (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas H, Stoddart JL (1980) Leaf senescence. Annu Rev Plant Physiol 31:83–111

    Article  CAS  Google Scholar 

  • Thomas PW, Woodward FI, Quick WP (2004) Systemic irradiance signalling in tobacco. New Phytol 161:193–198

    Article  CAS  Google Scholar 

  • Uemura A, Ishida A, Nakano T, Terashima I, Tanabe H, Matsumoto Y (2000) Acclimation of leaf characteristics of Fagus species to previous-year and current-year solar irradiances. Tree Physiol 20:945–951

    Article  PubMed  CAS  Google Scholar 

  • van Arendonk JJCM, Poorter H (1994) The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ 17:963–970

    Article  CAS  Google Scholar 

  • van Volkenburgh E (1999) Leaf expansion an integrating plant behavior. Plant Cell Environ 22:1463–1473

    Article  Google Scholar 

  • Vapaavuori EM, Vuorinen AH (1989) Seasonal variation in the photosynthetic capacity of a willow (Salix cv. Aquatica gigantea) canopy.1. Changes in the activity and amount of ribulose 1,5-bisphosphate carboxylase-oxygenase and the content of nitrogen and chlorophyll at different levels in the canopy. Tree Physiol 5:423–444

    Article  PubMed  CAS  Google Scholar 

  • Vos J, van der Putten PEL (2001) Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts. Eur J Agron 14:209–220

    Article  Google Scholar 

  • Walters RG, Rogers JJM, Shephard F, Horton P (1999) Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta 209:517–527

    Article  PubMed  CAS  Google Scholar 

  • Weaver LM, Amasino RM (2001) Senescence is induced in individually darkened Arabidopsis leaves but inhibited in whole darkened plants. Plant Physiol 127:876–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  PubMed  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, …, Villar R (2004) The Worldwide Leaf Economics Spectrum. Nature 428:821–827

    Google Scholar 

  • Yano S, Terashima I (2001) Seperate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation on Chenopodium album. Plant Cell Physiol 41:1303–1310

    Article  Google Scholar 

  • Yano S, Terashima I (2004) Developmental process of sun and shade leaves in Chenopodium album L. Plant Cell Environ 27:781–793

    Article  Google Scholar 

  • Zweifel R, Bohm JP, Hasler R (2002) Midday stomatal closure in Norway spruce – reactions in the upper and lower crown. Tree Physiol 22:1125–1136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Alex Boonman and Ülo Niinemets are thanked for their valuable comments on earlier versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thijs L. Pons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pons, T.L. (2016). Regulation of Leaf Traits in Canopy Gradients. In: Hikosaka, K., Niinemets, Ü., Anten, N. (eds) Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7291-4_5

Download citation

Publish with us

Policies and ethics