Skip to main content
Log in

Identification of the ferredoxin interaction sites on ferredoxin-dependent glutamate synthase from Synechocystis sp. PCC 6803

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Based on in silico docking methods, five amino acids in glutamate synthase (Gln-467, His-1144, Asn-1147, Arg-1162, and Trp-676) likely constitute key binding residues in the interface of a glutamate synthase:ferredoxin complex. Although all interfacial mutants studied showed the ability to form a complex under low ionic strength, these docking mutations showed significantly less ferredoxin-dependent activities, while still retaining enzymatic activity. Furthermore, isothermal titration calorimetry showed a possible 1:2 molar ratio between the wild-type glutamate synthase and ferredoxin. However, each of our interfacial mutants showed only a 1:1 complex with ferredoxin, suggesting that the mutations directly affect the glutamate synthase:ferredoxin heterodimer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asada K (1967) Purification and properties of a sulfite reductase from leaf tissue. J Biol Chem 242:3646–3654

    CAS  PubMed  Google Scholar 

  • Batie CJ, Kamin H (1981) The relation of pH and oxidation-reduction potential to the association state of the ferredoxin:ferredoxin NADP+ reductase complex. J Biol Chem 256:7756–7763

    CAS  PubMed  Google Scholar 

  • Binda C, Bossi RT, Wakatsuki S, Arzt S, Coda A, Curti B, Vanoni MA, Mattevi A (2000) Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase. Structure 8:1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (1986) Data for biochemical research, 3 rd edn. Clarendon Press, Oxford, pp 126–127

    Google Scholar 

  • Faeder EJ, Siegel LM (1973) A rapid micromethod for determination of FMN and FAD in mixture. Analytical Biochem 53:332–336

    Article  CAS  Google Scholar 

  • Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galván F, Márquez AJ, Vega JM (1984) Purification and molecular properties of ferredoxin-glutamate synthase from Chlamydomonas reinhardii. Planta 162:180–187

    Article  PubMed  Google Scholar 

  • Garcia-Sanchez MI, Gotor C, Jacquot JP, Stein M, Suzuki A, Vega JM (1997) Critical residues of Chlamydomonas reinhardtii ferredoxin for interaction with nitrite reductase and glutamate synthase revealed by site-directed mutagenesis. Eur J Biochem 250:364–368

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa M, Knaff DB (1985) Interaction of ferredoxin-linked nitrite reductase with ferredoxin. Biochim Biophys Acta 830:173–170

    Article  CAS  Google Scholar 

  • Hirasawa M, Tamura G (1984) Flavin and iron-sulfur containing ferredoxn-linked glutamate synthase from spinach leaves. J Biochem 95:983–994

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa M, Boyer JM, Gray KA, Davis DJ, Knaff DB (1986) The interaction of ferredoxin with chloroplast ferredoxin-linked enzymes. Biochim Biophys Acta 831:23–28

    Article  Google Scholar 

  • Hirasawa M, Droux M, Gray KA, Boyer JM, Davis DJ, Buchanan BB, Knaff DB (1988) Ferredoxin-thioredoxin reductase: properties of its complex with ferredoxin. Biochim Biophys Acta 935:1–8

    Article  CAS  Google Scholar 

  • Hirasawa M, Chang KT, Morrow KJ Jr, Knaff DB (1989) Circular dichroism, binding and immunological studies on the interaction between spinach ferredoxin and glutamate synthase. Biochim Biophys Acta 977:150–156

    Article  CAS  Google Scholar 

  • Hirasawa M, Hurley JK, Salamon Z, Tollin G, Markley JL, Cheng H, Xia B, Knaff DB (1998) The role of aromatic and acidic amino acids in the electron transfer reaction catalyzed by spinach ferredoxin-dependent glutamate synthase. Biochim Biophys Acta 1363:134–146

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa M, Rubio LM, Griffin JL, Flores E, Herrero A, Li J, Kim SK, Hurley JK, Tollin G, Knaff DB (2004) Complex formation between ferredoxin and Synechococcus ferredoxin: nitrate oxidoreductase. Biochim Biophys Acta 1608:155–162

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa M, Tripathy JN, Somasundaram R, Johnson MK, Allen JP, Knaff DB (2009) The interaction of spinach nitrite reductase with ferredoxin: a site-directed mutation study. Mol Plant 2:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36(Web Server issue):W233–W238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez AJ, Gotor C, Romero LC, Galván F, Vega JM (1986) Ferredoxin-glutamate synthase from Chlamydomonas Reinhardii. Prosthetic groups and preliminary studies of mechanism. Int J Biochem 18:531–535

    Article  Google Scholar 

  • Martinez-Julvez M, Medina M, Velazquez-Campoy A (2009) Binding thermodynamics of Ferredoxin: NADP+ Reductase: two different protein substrates and one energetics. Biophys J 96:4966–4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mato T, Suzuki F, Ida S (1977) Corn leaf glutamate synthase: purification and properties of the enzyme. Plant Cell Physiol 20:1329–1340

    Article  Google Scholar 

  • Miller RW, Massey V (1965) Dihydroorotic dehydrogenase: I. Some properties of the enzyme. J Biol Chem 240:1453–1465

    CAS  PubMed  Google Scholar 

  • Miller RE, Stadtman ER (1972) Glutamate synthase from Escherichia coli: an iron-sulfide flavoprotein. J Biol Chem 247:7407–7419

    CAS  PubMed  Google Scholar 

  • Navarro F, Martin-Figueroa E, Candau P, Florencio F (2000) Ferredoxin-dependent iron-sulfur flavoprotein glutamate synthase (GlsF) from the Cyanobacterium Synechocystis sp. PCC 6803: expression and assembly in Escherichia coli. Arch Biochem Biophys 379:267–276

    Article  CAS  PubMed  Google Scholar 

  • Palma PN, Laqoutte B, Krippahl L, Moura JJ, Gueriesquin F (2005) Synechocystis ferredoxin/ferredoxin-NADP+reductase/NADP+complex: structural model obtained by NMR-restrained docking. FEBS Lett 579:4585–4590

    Article  CAS  PubMed  Google Scholar 

  • Pierce MM, Raman CS, Nall BT (1999) Isothermal titration calorimetry of protein-protein interactions. Methods 19:213–221

    Article  CAS  PubMed  Google Scholar 

  • Popovych N, Sun S, Ebright RH, Kalodimos CG (2006) Dynamically driven protein allostery. Nat Struct Mol Biol 13:831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravasio S, Dossena L, Martin-Figueroa E, Florencio FJ, Mattevi A, Morandi P, Curti B, Vanoni MA (2002) Properties of the recombinant ferredoxin-dependent glutamate synthase of Synechocystis PCC6803. Comparison with the Azospirillum brasilense NADPH-dependent enzyme and its isolated R subunit. BioChemistry 41:8120–8133

    Article  CAS  PubMed  Google Scholar 

  • Saitoh T, Ikegami T, Nakayama M, Teshima K, Akutsu H, Hase T (2006) NMR Study of the electron transfer complex of plant ferredoxin and sulfite reductase/mapping the interaction sites of ferredoxin. J Biol Chem 281:10482–10488

    Article  CAS  PubMed  Google Scholar 

  • Schmitz S, Navarro F, Kutzki CK, Florencio FJ, Böhme H (1996) Glutamate 94 of [2Fe–2S] ferredoxin is important for efficient electron transfer in the 1:1 complex formed with ferredoxin-glutamate synthase (GltS) from Synechocystis sp. PCC 6803. Biochim Biophys Acta 1277:135–140

    Article  PubMed  Google Scholar 

  • Schrodinger L (2014) The PyMOL molecular graphics system, version 1.6

  • Siegel LM, Murphy MJ, Kamin H (1973) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J Biol Chem 248:251–264

    CAS  PubMed  Google Scholar 

  • Smith JA, Pease LG (1982) Reverse turns in peptides and proteins. CRC Crit Rev Biochem 8:315–399

    Article  Google Scholar 

  • Suzuki A, Gadal P (1984) Glutamate synthase: physicochemical and functional properties of different forms in higher plants and in other organisms. Phys Vég 22:471–486

    CAS  Google Scholar 

  • Tamura G, Kanki M, Hirasawa M, Oto M (1980) The purification and properties of glutamate synthase from spinach leaves, and its dependence on ferredoxin. Agric Biol Chem 44:925–927

    CAS  Google Scholar 

  • Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310-W314

    Article  PubMed Central  Google Scholar 

  • Tripathy JN, Hirasawa M, Sutton RB, Dasgupta A, Vaidyanathan N, Zabet-Moghaddam M, Florencio FJ, Srivastava AP, Knaff DB (2015) A loop unique to ferredoxin-dependent glutamate synthases is not absolutely essential for ferredoxin-dependent catalytic activity. Photosynth Res 123:129–139

    Article  CAS  PubMed  Google Scholar 

  • Van den Heuvel RHH, Ferrari D, Bossi RT, Ravasio S, Curti B, Vanoni MA, Florencio FJ, Mattevi A (2002) Structural studies on the synchronization of catalytic centers in glutamate synthase. J Biol Chem 277:24579–24583

    Article  PubMed  Google Scholar 

  • van den Heuvel RHH, Svergun DI, Petoukhov MV, Coda A, Curti B, Ravasio S, Vanoni MA, Mattevi A (2003) The active conformation of glutamate synthase and its binding to ferredoxin. J Mol Biol 27:113–128

    Article  Google Scholar 

  • van den Heuval RHH, Curti B, Vanoni MA, Mattevi A (2004) Glutamate synthase: a fascinating pathway from L-glutamine to L-glutamate. CMLS Cell Mol Life Sci 61:669–681

    Article  Google Scholar 

  • Vanoni MA, Curti B (1999) Glutamate synthase: a complex iron-sulfur flavoprotein. Cell Mol Life Sci 55:617–638

    Article  CAS  PubMed  Google Scholar 

  • Vanoni MA, Dossena L, van den Heuvel RHH, Curti B (2005) Structure-function studies on the complex iron-sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation. Photosynth Res 83:219–238

    Article  CAS  PubMed  Google Scholar 

  • Wallsgrove RM, Harel E, Lea PJ, Miflin BJ (1977) Studies on glutamate synthase from the leaves of higher plants. J Exp Bot 28:588–596

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We especially thank Prof. Guy Hanke (Queen Mary University of London) for reading this manuscript and suggesting layout of this manuscript. This research was supported by AR063634 (to R.B.S) and the Office of Basic Energy Sciences of the U.S. Department of Energy, through Grant DE-FG03-99ER20346 (to D.B.K.).

Author information

Authors and Affiliations

Authors

Contributions

MH and DBK conceived of and designed the studies. JS and NV provided all variants, AS provided ferredoxin, RBS contributed in silico docking model, and MH and RMW analyzed the data and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to R. Max Wynn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirasawa, M., Solis, J., Vaidyanathan, N. et al. Identification of the ferredoxin interaction sites on ferredoxin-dependent glutamate synthase from Synechocystis sp. PCC 6803. Photosynth Res 134, 317–328 (2017). https://doi.org/10.1007/s11120-017-0446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0446-z

Keywords

Navigation