Skip to main content
Log in

Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Cyclic electron transport around photosystem I (PSI) generates ∆pH across the thylakoid membrane without net production of NADPH. In angiosperms, two pathways of PSI cyclic electron transport operate. The main pathway depends on PGR5/PGRL1 proteins and is likely identical to the historical Arnon’s pathway. The minor pathway depends on chloroplast NADH dehydrogenase-like (NDH) complex. In assays of their rates in vivo, the two independent pathways are often mixed together. Theoretically, linear electron transport from water to NADP+ cannot satisfy the ATP/NADPH production ratio required by the Calvin-Benson cycle and photorespiration. PGR5/PGRL1-dependent PSI cyclic electron transport contributes substantially to the supply of ATP for CO2 fixation, as does linear electron transport. Also, the contribution of chloroplast NDH cannot be ignored, especially at low light intensity, although the extent of the contribution depends on the plant species. An increase in proton conductivity of ATP synthase may compensate ATP synthesis to some extent in the pgr5 mutant. Combined with the decreased rate of ∆pH generation, however, this mechanism sacrifices homeostasis of the thylakoid lumen pH, seriously disturbing the pH-dependent regulation of photosynthetic electron transport, induction of qE, and downregulation of the cytochrome b 6 f complex. PGR5/PGRL1-dependent PSI cyclic electron transport produces sufficient proton motive force for ATP synthesis and the regulation of photosynthetic electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Cyt:

Cytochrome

Fd:

Ferredoxin

NDH:

NADH dehydrogenase-like

NPQ:

Nonphotochemical quenching

PSI/II:

Photosystem I/II

pmf :

Proton motive force

PQ:

Plastoquinone

References

  • Allahverdiyeva Y, Isojärvi J, Zhang P, Aro E-M (2015) Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. Life 5:716–743. doi:10.3390/life5010716

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen J (2002) Photosynthesis of ATP-electrons, proton pumps, rotors, and poise. Cell 110:273–276. doi:10.1016/S0092-8674(02)00870-X

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI, Allen MB, Whatley FR (1954) Photosynthesis by isolated chloroplasts. Nature 1174:394396

    Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355:1419–1431. doi:10.1098/rstb.2000.0703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K, Heber U, Schreiber U (1992) Pool size of electrons that can be donated to P700+ as determined in intact leaves: donation to P700+ from stromal components via the intersystem chain. Plant Cell Physiol 33:927–932

    CAS  Google Scholar 

  • Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102:9709–9713. doi:10.1073/pnas.0503952102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailleul B, Cardol P, Breyton C, Finazzi G (2010) Electrochromism: a useful probe to study algal photosynthesis. Photosynth Res 106:179–189. doi:10.1007/s11120-010-9579-z

    Article  CAS  PubMed  Google Scholar 

  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448. doi:10.1038/nature11871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876. doi:10.1093/emboj/17.4.868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291. doi:10.1093/molbev/msj029

    Article  CAS  PubMed  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (∆ψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into ∆ψ and ∆pH by ionic strength. Biochemistry 40:1226–1237. doi:10.1021/bi0018741

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285. doi:10.1016/j.cell.2007.12.028

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Mi H, Shikanai T, Asada K (1997) Donation of electrons to plastoquinone by NAD(P)H dehydrogenase and by ferredoxin-quinone reductase in spinach chloroplasts. Plant Cell Physiol 38:1272–1277

    Article  CAS  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A, Asada K, Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457:5–8. doi:10.1016/S0014-5793(99)00989-8

    Article  CAS  PubMed  Google Scholar 

  • Fisher N, Kramer DM (2014) Non-photochemical reduction of thylakoid photosynthetic redox carriers in vitro: relevance to cyclic electron flow around photosystem I? Biochim Biophys Acta 1837:1944–1954. doi:10.1016/j.bbabio.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  • Gotoh E, Matsumoto M, Ogawa K, Kobayashi Y, Tsuyama M (2010) A qualitative analysis of the regulation of cyclic electron flow around photosystem I from the post-illumination chlorophyll fluorescence transient in Arabidopsis: a new platform for the in vivo investigation of the chloroplast redox state. Photosynth Res 103:111–123. doi:10.1007/s11120-009-9525-0

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36:541–549. doi:10.1046/j.1365-313X.2003.01900.x

    Article  CAS  PubMed  Google Scholar 

  • Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523. doi:10.1016/j.molcel.2012.11.030

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Endo T, Shikanai T, Aro E-M (2011) Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol 52:1560–1568. doi:10.1093/pcp/pcr098

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213. doi:10.1038/nature08885

    Article  CAS  PubMed  Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56:407–416. doi:10.1093/jxb/eri106

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99:10209–10214. doi:10.1073/pnas.102306999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopetide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330. doi:10.1038/nature03229

    Article  CAS  PubMed  Google Scholar 

  • Kou J, Takahashi S, Fan D-Y, Badger MR, Chow WS (2015) Partially dissecting the steady-state electron fluxes in Photosystem I in wild-type and pgr5 and ndh mutants of Arabidopsis. Front Plant Sci 6:758. doi:10.3389/fpls.2015.00758

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357. doi:10.1016/j.tplants.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  • Leister D, Shikanai T (2013) Complexities and protein complexes in the antimycin A-sensitive pathway of cyclic electron flow in plants. Front Plant Sci 4:161. doi:10.3389/fpls.2013.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi T, Wakasugi T, Shinozaki K, Yamaguchi-Shinozaki K, Zaita N, Hidaka T, Meng BY, Ohto C, Tanaka M, Kato A, Maruyama T, Sugiura M (1987) Six chloroplast genes (ndhA-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of the splice sites in ndhA and ndhB pre-mRNAs. Mol Gen Genet 210:385–393

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Takeda S, Endo T, Jahns P, Hashimoto T, Shikanai T (2001) Cytochrome b 6 f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28:351–359. doi:10.1046/j.1365-313X.2001.01178.x

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371. doi:10.1016/S0092-8674(02)00867-X

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582. doi:10.1038/nature02598

    Article  CAS  PubMed  Google Scholar 

  • Nandha B, Finazzi G, Joliot P, Hald S, Johnson GN (2007) The role of PGR5 in the redox poising of photosynthetic electron transport. Biochim Biophys Acta 1767:1252–1259. doi:10.1016/j.bbabio.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa Y, Yamamoto H, Okegawa Y, Wada S, Sato N, Taira Y, Sugimoto K, Makino A, Shikanai T (2012) PGR5-dependent cyclic electron transport around PSI contributes to the redox homeostasis in chloroplasts rather than CO2 fixation and biomass production in rice. Plant Cell Physiol 53:2117–2126. doi:10.1093/pcp/pcs153

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umezono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574. doi:10.1038/322572a0

    Article  CAS  Google Scholar 

  • Okegawa Y, Kagawa Y, Kobayashi Y, Shikanai T (2008) Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts. Plant Cell Physiol 49:825–834. doi:10.1093/pcp/pcn055

    Article  CAS  PubMed  Google Scholar 

  • Okegawa Y, Kobayashi Y, Shikanai T (2010) Physiological links among alternative electron transport pathways reducing and oxidizing plastoquinone in Arabidopsis. Plant J 63:458–468. doi:10.1111/j.1365-313X.2010.04252.x

    Article  CAS  PubMed  Google Scholar 

  • Peltier G, Aro E-M, Shikanai T (2016) NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis: Involvement in cyclic electron flow, (chloro)respiration, and acclimation to the environment. Annu Rev Plant Biol. doi:10.1146/annurev-arplant-043014-114752

    PubMed  Google Scholar 

  • Peng L, Shikanai T (2011) Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol 155:1629–1639. doi:10.1104/pp.110.171264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Shimizu H, Shikanai T (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J Biol Chem 83:34873–34879. doi:10.1074/jbc.M803207200

    Article  Google Scholar 

  • Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21:3623–3640. doi:10.1105/tpc.109.068791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2011) A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLoS Biol 9:e1001040. doi:10.1371/journal.pbio.1001040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217. doi:10.1146/annurev.arplant.58.091406.110525

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T (2014) Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Curr Opin Biotechnol 26:25–30. doi:10.1016/j.copbio.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T (2015) Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochim Biophys Acta. doi:10.1016/j.bbabio.2015.10.013

    Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiehl HH, Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z. Naturforsch B. 24:1588–1598

    Article  CAS  PubMed  Google Scholar 

  • Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci 112:5539–5544. doi:10.1073/pnas.1418223112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto K, Okegawa Y, Tohri A, Long TA, Covert SF, Hisabori T, Shikanai T (2013) A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. Plant Cell Physiol 54:1525–1534. doi:10.1093/pcp/pct098

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Järvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro E-M (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948. doi:10.1105/tpc.112.097162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagawa K, Tsujimoto HY, Arnon DI (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 49:567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567. doi:10.1104/pp.108.134122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Clowez S, Wollman F-A, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954. doi:10.1038/ncomms2954

    PubMed  PubMed Central  Google Scholar 

  • Tikkanen M, Grieco M, Kangasjärvi S, Aro E-M (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol 152:723–735. doi:10.1104/pp.109.150250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano JM, Beyly A, Cuiné S, Plet J, Reiter IM, Genty B, Cournac L, Hippler M, Peltier G (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23:2619–2630. doi:10.1105/tpc.111.086876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda M, Kuniyoshi T, Yamamoto Y, Sugimoto K, Ishizaki K, Kohchi T, Nishimura Y, Shikanai T (2012) Composition and physiological function of the chloroplast NADH dehydrogenase-like complex in Marchantia polymorpha. Plant J 72:683–693. doi:10.1111/j.1365-313X.2012.05115.x

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yamamoto H, Shikanai T (2015) Role of cyclic electron transport around photosystem I in regulating proton motive force. Biochim Biophys Acta 1847:931–938. doi:10.1016/j.bbabio.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Shikanai T (2013) In planta mutagenesis of Src homology 3 domain-like fold of NdhS, a ferredoxin-binding subunit of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. A conserved Arg-193 plays a critical role in ferredoxin binding. J Biol Chem 288:36328–36337. doi:10.1074/jbc.M113.511584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Peng L, Fukao Y, Shikanai T (2011) An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23:1480–1493. doi:10.1105/tpc.110.080291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Takahashi S, Badger MR., Shikanai T (2016) Artificial remodeling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nature Plants in press

  • Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67 (in press)

  • Yamori W, Shikanai T, Makino A (2015) Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci Rep 5:13908. doi:10.1038/srep13908

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Makino A, Shikanai T (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci Rep (in press)

Download references

Acknowledgments

This work was supported by the Japan Science and Technology Agency (CREST) and the Japan Society for the Promotion of Science (25251032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Shikanai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikanai, T. Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. Photosynth Res 129, 253–260 (2016). https://doi.org/10.1007/s11120-016-0227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0227-0

Keywords

Navigation