Skip to main content

Advertisement

Log in

Electrochromism: a useful probe to study algal photosynthesis

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

An Erratum to this article was published on 15 November 2011

Abstract

In photosynthesis, electron transfer along the photosynthetic chain results in a vectorial transfer of protons from the stroma to the lumenal space of the thylakoids. This promotes the generation of an electrochemical proton gradient (Δμ +H ), which comprises a gradient of electric potential (ΔΨ) and of proton concentration (ΔpH). The Δμ +H has a central role in the photosynthetic process, providing the energy source for ATP synthesis. It is also involved in many regulatory mechanisms. The ΔpH modulates the rate of electron transfer and triggers deexcitation of excess energy within the light harvesting complexes. The ΔΨ is required for metabolite and protein transport across the membranes. Its presence also induces a shift in the absorption spectra of some photosynthetic pigments, resulting in the so-called ElectroChromic Shift (ECS). In this review, we discuss the characteristic features of the ECS, and illustrate possible applications for the study of photosynthetic processes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  PubMed  CAS  Google Scholar 

  • Allen AE, Laroche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci USA 105:10438–10443

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Chow WS, Park YI (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental clues. Photosynth Res 46:129–139

    Article  CAS  Google Scholar 

  • Bailey S, Melis A, Mackey KR, Cardol P, Finazzi G, van Dijken G, Berg GM, Arrigo K, Shrager J, Grossman A (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276

    Article  PubMed  CAS  Google Scholar 

  • Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282

    Article  PubMed  CAS  Google Scholar 

  • Cardol P, Bailleul B, Rappaport F, Derelle E, Béal D, Breyton C, Bailey S, Wollman FA, Grossman A, Moreau H, Finazzi G (2008) An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc Natl Acad Sci USA 105:7881–7886

    Article  PubMed  CAS  Google Scholar 

  • Chow WS, Funk C, Hope AB, Govindjee (2000) Greening of intermittent-light-grown bean plants in continuous light: thylakoid components in relation to photosynthetic performance and capacity for photoprotection. Indian J Biochem Biophys 37:395–404

    PubMed  CAS  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR, Snozzi M (1983) The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. A modified Q-cycle mechanism. Biochim Biophys Acta 723:202–218

    Article  PubMed  CAS  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (∆Ψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into ∆Ψ and ∆pH by ionic strength. Biochemistry 40:1226–1237

    Article  PubMed  CAS  Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM (2005a) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406

    Article  PubMed  CAS  Google Scholar 

  • Cruz JA, Kanazawa A, Treff N, Kramer DM (2005b) Storage of light-driven transthylakoid proton motive force as an electric field (Deltapsi) under steady-state conditions in intact cells of Chlamydomonas reinhardtii. Photosynth Res 85:221–233

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  PubMed  CAS  Google Scholar 

  • Danielsson R, Albertsson PA, Mamedov F, Styring S (2004) Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochim Biophys Acta 1608:53–61

    Article  PubMed  CAS  Google Scholar 

  • Delosme R (1991) Electron transfer from cytochrome f to photosystem I in green algae. Photosynth Res 29:45–54

    CAS  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  PubMed  CAS  Google Scholar 

  • Fan DY, Hope AB, Smith PJ, Jia H, Pace RJ, Anderson JM, Chow WS (2007) The stoichiometry of the two photosystems in higher plants revisited. Biochim Biophys Acta 1767:1064–1072

    Article  PubMed  CAS  Google Scholar 

  • Farah J, Rappaport F, Choquet Y, Joliot P, Rochaix JD (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14:4976–4984

    PubMed  CAS  Google Scholar 

  • Finazzi G, Rappaport F (1998) In vivo characterization of the electrochemical proton gradient generated in darkness in green algae and its kinetic effects on cytochrome b6f turnover. Biochemistry 37:9999–10005

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Zito F, Bonente G, Bassi R, Wollman FA (2006) Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Forti G, Elli G (1995) The function of ascorbic acid in photosynthetic phosphorylation. Plant Physiol 109:1207–1211

    PubMed  CAS  Google Scholar 

  • Genty B, Harbinson J, Briantais J-M, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25:249–257

    Article  CAS  Google Scholar 

  • Goss R, Wilhelm C, Garab G (2000) Organization of the pigment molecules in the chlorophyll a/b/c containing alga Mantoniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy. Biochim Biophys Acta 1457:190–199

    Article  PubMed  CAS  Google Scholar 

  • Guikema JA, Sherman LA (1984) Influence of iron deprivation on the membrane composition of Anacystis nidulans. Plant Physiol 74:90–95

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J, Foyer CH (1991) Relationships between the efficiencies of photosystems I and II and stromal redox state in CO2-free air: evidence for cyclic electron flow in vivo. Plant Physiol 97:41–49

    Article  PubMed  CAS  Google Scholar 

  • Heber U (1969) Conformational changes of chloroplasts induced by illumination of leaves in vivo. Biochim Biophys Acta 180:302–319

    Article  PubMed  CAS  Google Scholar 

  • Heldt HW, Werdan K, Milovancev M, Geller G (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta 314:224–241

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P, Robinson C (2004) Mechanisms of protein import and routing in chloroplasts. Curr Biol 14:1064–1077

    Article  Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56:407–416

    Article  PubMed  CAS  Google Scholar 

  • Johnson X, Wostrikoff K, Finazzi G, Kuras R, Schwarz C, Bujaldon S, Nickelsen J, Stern DB, Wollman FA, Vallon O (2010) MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in chlamydomonas and arabidopsis. Plant Cell 22:234–248

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Delosme R (1974) Flash induced 529 nm absorption change in green algae. Biochim Biophys Acta 357:267–284

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (1989) Characterization of linear and quadratic electrochromic probes in Chlorella sorokiniana and Chlamydomonas reinhardtii. Biochim Biophys Acta 975:355–360

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99:10209–10214

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (2008) Quantification of the electrochemical proton gradient and activation of ATP synthase in leaves. Biochim Biophys Acta 1777:676–683

    Article  PubMed  CAS  Google Scholar 

  • Junesh U, Gräber P (1985) The rate of ATP synthesis as a function of the ΔpH in normal and dithiothreitol-modified chloroplasts. Biochim Biophys Acta 809:429–434

    Article  Google Scholar 

  • Junge W, McLaughlin S (1987) The role of fixed and mobile buffers in the kinetics of proton movement. Biochim Biophys Acta 890:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kramer H, Mathis P (1980) Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures. Biochim Biophys Acta 593:319–329

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    Article  PubMed  CAS  Google Scholar 

  • Lemaire C, Wollman F-A (1989) The chloroplast ATP synthase in Chlamydomonas reinhardtii: II. Biochemical studies on its biogenesis using mutants defective in photophosphorylation. J Biol Chem 264:10235–10242

    PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72Å resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  • Lösche M, Feher G, Okamura MY (1988) The stark effect in photosynthetic reaction centers from Rhodobacter Sphaeroides R-26, Rhodoppseudomonas viridis and the D1D2 complex of photosystem II from spinach. In: Breton J, Verméglio A (eds) The photosynthetic bacterial reaction center. Plenum Press, New York, pp 151–164

    Google Scholar 

  • Mehler AM (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    Article  PubMed  CAS  Google Scholar 

  • Melis A (1989) Spectroscopic methods in photosynthesis—photosystem stoichiometry and chlorophyll antenna size. Philos Trans R Soc Lond Ser A Math Phys Sci 323:397–409

    CAS  Google Scholar 

  • Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763:578–594

    Article  PubMed  CAS  Google Scholar 

  • Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 21:6709–6720

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O(2) as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    Article  PubMed  CAS  Google Scholar 

  • Petroutsos D, Terauchi AM, Busch A, Hirschmann I, Merchant SS, Finazzi G, Hippler M (2009) PGRL1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in Chlamydomonas reinhardtii. J Biol Chem 284:32770–32781

    Article  PubMed  CAS  Google Scholar 

  • Rumberg B, Siggel U (1969) pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften 56:130–132

    Article  PubMed  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97:14283–14288

    Article  PubMed  CAS  Google Scholar 

  • Sandstrom S, Ivanov AG, Park YI, Oquist G, Gustafsson P (2002) Iron stress responses in the cyanobacterium Synechococcus sp. PCC7942. Physiol Plant 116:255–263

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Reich R, Witt HT (1971) Electrochromism of chlorophylls and carotenoids in multilayers and in chloroplasts. Naturwissenschaften 58:414

    Article  PubMed  CAS  Google Scholar 

  • Siefermann D, Yamamoto HY (1975) Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle. Arch Biochem Biophys 171:70–77

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Sherman LA (2007) Reflections on the function of IsiA, a cyanobacterial stress-inducible, Chl-binding protein. Photosynth Res 93:17–25

    Article  PubMed  CAS  Google Scholar 

  • Six C, Worden AZ, Rodriguez F, Moreau H, Partensky F (2005) New insights into the nature and phylogeny of prasinophyte antenna proteins: Ostreococcus tauri, a case study. Mol Biol Evol 22:2217–2230

    Article  PubMed  CAS  Google Scholar 

  • Steigmiller S, Turina P, Gräber P (2008) The thermodynamic H +/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. Proc Natl Acad Sci USA 105:3745–3750

    Article  PubMed  CAS  Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692

    Article  PubMed  CAS  Google Scholar 

  • Szabo M, Lepetit B, Goss R, Wilhelm C, Mustardy L, Garab G (2008) Structurally flexible macro- organisation of the pigment protein complexes of the diatom Phaeodactylum tricornutum. Photsynth Res 95:237–245

    Article  CAS  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim Biophys Acta 1767:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Timperio AM, D’Amici GM, Barta C, Loreto F, Zolla L (2007) Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. J Exp Bot 58:3695–3710

    Article  PubMed  CAS  Google Scholar 

  • Varsano T, Wolf SG, Pick U (2006) A chlorophyll a/b-binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina. J Biol Chem 281:10305–10315

    Article  PubMed  CAS  Google Scholar 

  • Vredemberg WJ (1976) Electrostatic interactions and gradients between chloroplast compartments ands cytoplasm. In: Barber J (ed) The intact chloroplast. Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands, pp 53–87

    Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505:355–427

    PubMed  CAS  Google Scholar 

  • Wraight CA, Cogdell RJ, Chance B (1978) Ion transport and electrochemical gradients in Photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum press, New York, pp 471–502

    Google Scholar 

  • Zhang P, Allahverdiyeva Y, Eisenhut M, Aro EM (2009) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS One 4:e5331

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bailleul.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11120-011-9704-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailleul, B., Cardol, P., Breyton, C. et al. Electrochromism: a useful probe to study algal photosynthesis. Photosynth Res 106, 179–189 (2010). https://doi.org/10.1007/s11120-010-9579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9579-z

Keywords

Navigation