Skip to main content
Log in

A variety of glycolipids in green photosynthetic bacteria

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The compositions of glycolipids in the following seven strains of green photosynthetic bacteria were investigated at the molecular level using LC–MS coupled with an evaporative light scattering detector: Chlorobium (Chl.) limicola strains Larsen (30 °C as the optimal cultivation temperature) and DSM245 (30 °C), Chlorobaculum (Cba.) tepidum strain ATCC49652 (45 °C), Cba. parvum strain NCIB8327 (30 °C), Cba. limnaeum strain 1549 (30 °C), Chl. phaeovibrioides DSM269 (30 °C), and Chloroflexus (Cfl.) aurantiacus strain J-10-fl (55 °C). Dependence of the molecular structures of glycolipids including the chain-length of their acyl groups upon bacterial cultivation temperatures was clearly observed. The organisms with their optimal temperatures of 30, 45, and 55 °C dominantly accumulated glycolipids possessing the acyl chains in the range of C15–C16, C16–C17, and C18–C20, respectively. Cba. tepidum with an optimal temperature of 45 °C preferred the insertion of a methylene group to produce finally a C17-cyclopropane chain. Cfl. aurantiacus cultured optimally at 55 °C caused a drastic increase in the chain-length. Notably, the length of such acyl groups corresponded to that of the esterifying chain in the 17-propionate residues of self-aggregative bacteriochlorophylls-c/d/e, indicating stabilization of their supramolecular structures through hydrophobic interactions among those hydrocarbon chains. Based on the detailed compositions of glycolipids, a survival strategy of green photosynthetic bacteria grown in the wide range of temperatures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

Cba. :

Chlorobaculum

Cfl. :

Chloroflexus

Chl. :

Chlorobium

DGDG:

Digalactosyldiacylglyceride

ELSD:

Evaporative light scattering detector

ESI:

Electrospray ionization

FMO protein:

Fenna–Matthews–Olson protein

MGDG:

Monogalactosyldiacylglyceride

RGDG:

Rhamnosylgalactosyldiacylglyceride

References

  • Balaban TS, Tamiaki H, Holzwarth AR (2005) Chlorins programmed for self-assembly. In: Würthner F (ed) Supramolecular dye chemistry (Topics Curr Chem vol. 258). Springer, Heidelberg, pp 1–38

    Chapter  Google Scholar 

  • Balogi Z, Török Z, Balogh G, Jósvay K, Shigapova N, Vierling E, Vigh L, Horváth I (2005) “Heat shock lipid” in cyanobacteria during heat/light-acclimation. Arch Biochem Biophys 436:346–354

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht, pp 195–217

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Borrego CM, Garcia-Gil LJ (1994) Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynth Res 41:157–163

    Article  CAS  Google Scholar 

  • Chew AGM, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129

    Article  PubMed  CAS  Google Scholar 

  • Costas AMG, Tsukatani Y, Rijpstra WIC, Schouten S, Welander PV, Summons RE, Bryant DA (2012) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168

    Article  CAS  Google Scholar 

  • Fages F, Griebenow N, Griebenow K, Holzwarth AR, Schaffner K (1990) Characterization of light-harvesting pigments of Chloroflexus aurantiacus. Two new chlorophylls: oleyl (octadec-9-enyl) and cetyl (hexadecanyl) bacteriochlorophyllides-c. J Chem Soc Perkin Trans 1:2791–2797

    Article  Google Scholar 

  • Frigaard NU, Chew AGM, Maresca JA, Bryant DA (2006) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 201–221

    Chapter  Google Scholar 

  • Glaeser J, Bañeras L, Rütters H, Overmann J (2002) Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Arch Microbiol 177:475–485

    Article  PubMed  CAS  Google Scholar 

  • Harada J, Miyago S, Mizoguchi T, Azai C, Inoue K, Tamiaki H, Oh-oka H (2008) Accumulation of chlorophyllous pigments esterified with the geranylgeranyl group and photosynthetic competence in the CT2256-deleted mutant of the green sulfur bacterium Chlorobium tepidum. Photochem Photobiol Sci 7:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Harada J, Mizoguchi T, Tsukatani Y, Noguchi M, Tamiaki H (2012) A seventh bacterial chlorophyll driving a large light-harvesting antenna. Sci Rep 2:671. doi:10.1038/srep00671

    Article  PubMed  Google Scholar 

  • Härtig C, Loffhagen N, Babel W (1999) Glucose stimulates a decrease of the fatty acid saturation degree in Acinetobacter calcoaceticus. Arch Microbiol 171:166–172

    Article  Google Scholar 

  • Holo H, Broch-Due M, Ormerod JG (1985) Glycolipids and the structure of chlorosomes in green bacteria. Arch Microbiol 143:94–99

    Article  CAS  Google Scholar 

  • Imhoff JF, Bias-Imhoff U (1995) Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 179–205

    Google Scholar 

  • James AM, John LH (1967) Ring location in cyclopropane fatty acid esters by a mass spectrometric method. Lipids 2:225–230

    Article  Google Scholar 

  • Knudsen E, Jantzen E, Bryn K, Ormerod JG, Sirevåg R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132:149–154

    Article  CAS  Google Scholar 

  • Loffhagen N, Härtig C, Benndorf D, Babel W (2002) Effects of growth temperature and lipophilic carbon sources on the fatty acid composition and membrane liquid fluidity of Acinetobacter calcoaceticus 69 V. Acta Biotechnol 22:235–243

    Article  Google Scholar 

  • Masuda S, Harada J, Yokono M, Yuzawa Y, Shimojima M, Murofushi K, Tanaka H, Masuda H, Murakawa M, Haraguchi T, Kondo M, Nishimura M, Yuasa H, Noguchi M, Oh-oka H, Tanaka A, Tamiaki H, Ohta H (2011) A monogalactosyldiacylglycerol synthase found in the green sulfur bacterium Chlorobaculum tepidum reveals important roles for galactolipids in photosynthesis. Plant Cell 23:2644–2658

    Article  PubMed  CAS  Google Scholar 

  • Miyatake T, Tamiaki H (2005) Self-aggregates of bacteriochlorophylls-c, d and e in a light-harvesting antenna system of green photosynthetic bacteria: effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments. J Photochem Photobiol C 6:89–107

    Article  CAS  Google Scholar 

  • Mizoguchi T, Yoshitomi T, Harada J, Tamiaki H (2011) Temperature- and time-dependent changes in the structure and composition of glycolipids during the growth of the green sulfur photosynthetic bacterium Chlorobaculum tepidum. Biochemistry 50:4504–4512

    Article  PubMed  CAS  Google Scholar 

  • Oelze J, Golecki JR (1995) Membranes and compositions of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 259–278

    Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67:61–75

    Article  CAS  Google Scholar 

  • Pedersen MØ, Borch A, Højrup P, Cox RP, Miller M (2006) The light-harvesting antenna of Chlorobium tepidum: interactions between the FMO protein and the major chlorosome protein CsmA studied by surface plasmon resonance. Photosynth Res 89:63–69

    Article  PubMed  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    Article  PubMed  CAS  Google Scholar 

  • Saga Y, Tamiaki H (2006) Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. J Biosci Bioeng 102:118–123

    Article  PubMed  CAS  Google Scholar 

  • Seiwert B, Giavalisco P, Willmitzer L (2009) Advanced mass spectrometry methods for analysis of lipids from photosynthetic organisms. In: Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions. Springer, Dordrecht, pp 445–461

    Chapter  Google Scholar 

  • Sørensen PG, Cox RP, Miller M (2008) Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters. Photosynth Res 95:191–196

    Article  PubMed  Google Scholar 

  • Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes and of their membranes attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45

    Article  PubMed  CAS  Google Scholar 

  • Tamiaki H, Shibata R, Mizoguchi T (2007) The 17-propionate function of (bacterio)chlorophylls: biological implication of their long esterifying chains in photosynthetic systems. Photochem Photobiol 83:152–162

    PubMed  CAS  Google Scholar 

  • Vogl K, Tank M, Orf GS, Blankenship RE, Bryant DA (2012) Bacteriochlorophyll f: properties of chlorosomes containing the “forbidden chlorophyll”. Front Microbiol 3. doi:10.3389/fmicb.2012.00298

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90

    Article  CAS  Google Scholar 

  • Wang AY, Cronan JE Jr (1994) The growth phase-dependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an RpoS (KatF)-dependent promoter plus enzyme instability. Mol Microbiol 11:1009–1017

    Article  PubMed  Google Scholar 

  • Wieslander Å, Christiansson A, Rilfors L, Lindblom G (1980) Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochemistry 19:3650–3655

    Article  PubMed  CAS  Google Scholar 

  • Wieslander Å, Rilfors L, Lindblom G (1986) Metabolic changes of membrane lipid composition in Acholeplasma laidlawii by hydrocarbons, alcohols, and detergents: arguments for effects on lipid packing. Biochemistry 25:7511–7517

    Article  PubMed  CAS  Google Scholar 

  • Yoshitomi T, Mizoguchi T, Kunieda M, Tamiaki H (2011) Characterization of glycolipids in light-harvesting chlorosomes from the green photosynthetic bacterium Chlorobium tepidum. Bull Chem Soc Jpn 84:395–402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. H. Oh-oka of Osaka University for his provision of Chl. limicola strain Larsen, Mr. D. Shoutsu, Mr. M. Miyoshi, Dr. K. Nakagawa and Dr. S. Kawana of Shimadzu Corporation for their GC–MS analyses of aliphatic acid methyl esters, and Dr. Y. Tsukatani of Ritsumeikan University for his useful discussion. This study was partially supported by Grants-in-Aid for Scientific Research (A) (No. 22245030) (to HT) and (C) (No. 24550065) (to TM) as well as for Young Scientists (B) (No. 24750169) (to JH) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Tamiaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (PDF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizoguchi, T., Harada, J., Yoshitomi, T. et al. A variety of glycolipids in green photosynthetic bacteria. Photosynth Res 114, 179–188 (2013). https://doi.org/10.1007/s11120-013-9802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9802-9

Keywords

Navigation