Skip to main content

Bacteriochlorophyll Biosynthesis in Green Bacteria

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

The photosynthetic green sulfur bacteria synthesize a complex mixture of bacteriochlorophylls and chlorophylls. Depending on the strain, the dominant species is bacteriochlorophyll (BChl) c, d, or e, which serves as the major light-harvesting pigment in the chlorosome antenna. Each of these BChl species occurs as a mixture of homologs differing in stereochemistry, methylation, and esterifying alcohol. In addition, BChl a is present in various protein-based antenna complexes and in the reaction centers. A third chlorophyll (Chl) species, Chl a esterified with Δ2, 6-phytadienol, functions as the primary electron acceptor in the reaction center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addlesee HA and Hunter (1999) Physical mapping and functional assignment of the geranylgeranyl-bacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides. J Bacteriol 181: 7248–7255

    PubMed  CAS  Google Scholar 

  • Addlesee HA and Hunter CN (2002) Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranylbacteriopheophytin reductase. J Bacteriol 184: 1578–1586

    PubMed  CAS  Google Scholar 

  • Addlesee HA, Fiedor L and Hunter CN (2000) Physical mapping of bchG, orf427, and orf177 in the photosynthesis gene cluster of Rhodobacter sphaeroides: Functional assignment of the bacteriochlorophyll synthetase gene. J Bacteriol 182: 3175–3182

    PubMed  CAS  Google Scholar 

  • Airs RL, Borrego CM, Garcia-Gil, J and Keeley BJ (2001) Identification of the bacteriochlorophyll homologues of Chlorobium phaeobacteroides strain UdG6053 grown at low light intensity. Photosynth Res 70: 221–230

    PubMed  CAS  Google Scholar 

  • Alberti M, Burke DH and Hearst JE (1995) Structure and sequence of the photosynthesis gene cluster. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1083–1106. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Andersen T, Briseid T, Nesbakken T, Ormerod JG, Sirevåg R and Thorud M (1983) Mechanisms of synthesis of 5-aminolevulinate in purple, green and blue-green bacteria. FEMS Microbiol Lett 19: 303–306

    CAS  Google Scholar 

  • Avissar YJ, Ormerod JG and Beale SI (1989) Distribution of δ- aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151: 513–519

    PubMed  CAS  Google Scholar 

  • Bañeras L, Borrego CM and Garcia-Gil LJ (1999) Growth rate-dependent bacteriochlorophyll c/d ratio in the antenna of Chlorobium limicola strain UdG6040. Arch Microbiol 171: 350–354

    Google Scholar 

  • Beale SI (1995) Porphyrins and hemes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 153–177. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM and DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415: 630–633

    PubMed  Google Scholar 

  • Blankenship RE and Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR and Parson WW (eds) Light-Harvesting Antennas, pp 195–217. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Blankenship RE, Olson JM and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 399–435. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bobe FW, Pfennig N, Swanson KL and Smith KM (1990) Red shift of absorption maxima in Chlorobiineae through enzymatic methylation of their antenna bacteriochlorophylls. Biochemistry 29: 4340–4348

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Jiang Z-Y, Bauer CE and Beale SI (1994a) Heterologous overexpression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes for S-adenosyl-L-methionine:Mg-protoporphyrin methyltransferase. J Bacteriol 176: 5290–5296

    CAS  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994b) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622–640

    CAS  Google Scholar 

  • Bollivar DW, Wang S, Allen JP and Bauer CE (1994c) Molecular genetic analysis of terminal steps in bacteriochlorphyll a biosynthesis: characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeranyl esterified bacteriochlorophyll a. Biochemistry 33: 12763–12768

    CAS  Google Scholar 

  • Borrego CM and Garcia-Gil LJ (1995) Rearrangement of light harvesting bacteriochlorophyll homologs as a response of green sulfur bacteria to low-light intensities. Photosynth Res 45: 21–30

    CAS  Google Scholar 

  • Borrego CM, Garcia-Gil J, Cristina XP, Vila X and Abella CA (1998) Occurrence of new bacteriochlorophyll d forms in natural populations of green photosynthetic sulfur bacteria. FEMS Microbiol Ecol 26: 257–267

    CAS  Google Scholar 

  • Borrego CM, Gerola PD, Miller M and Cox RP (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59: 159–166

    CAS  Google Scholar 

  • Broch-Due M and Ormerod JG (1978) Isolation of a-c mutant from Chlorobium with BChl-d by cultivation at low-light intensity. FEMS Microbiol Lett 3: 305–308

    Google Scholar 

  • Bryant DA, Vassilieva EV, Frigaard N-U, and Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41: 14403–14411

    PubMed  CAS  Google Scholar 

  • Burke DH, Alberti M and Hearst JE (1993a) The Rhodobacter capsulatus chlorin reductase-encoding locus, bchA, consists of three genes, bchX, bchY, and bchZ. J. Bacteriol 175: 2407–2413

    CAS  Google Scholar 

  • Burke DH, Alberti M and Hearst JE (1993b) bchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants. J Bacteriol 175: 2414–2422

    CAS  Google Scholar 

  • Caple MB, Chow H-C and Strouse CE (1978) Photosynthetic pigments of green sulfur bacteria. The esterifying alcohols of bacteriochlorophylls c from Chlorobium limicola. J Biol Chem 253: 6730–6737

    PubMed  CAS  Google Scholar 

  • Coomber SA, Chaudri AM, Connor A, Britton G and Hunter CN (1990) Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 4: 977–989

    PubMed  CAS  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Venter JC, Gruber TM, Ketchum KA, Tettelin H, Bryant DA and Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99: 9509–9514

    PubMed  CAS  Google Scholar 

  • Fages F, Griebenow N, Griebenow K, Holzwarth AR and Schaffner K (1990) Characterization of light-harvesting pigments of Chloroflexus aurantiacus—2 new chlorophylls—oleyl (octadec- 9-enyl) and cetyl (hexadecanyl) bacteriochlorophyllides-c. J Chem Soc Perkin Trans 1, 10: 2791–2797

    Google Scholar 

  • Feick RG and Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23: 3693–3700

    CAS  Google Scholar 

  • Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD and Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311: 111–122

    PubMed  CAS  Google Scholar 

  • Frigaard N-U and Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67: 2538–2544

    PubMed  CAS  Google Scholar 

  • Frigaard N-U and Bryant DA (2004) Seeing green bacteria in a new light: Genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182: 265–276

    PubMed  CAS  Google Scholar 

  • Frigaard N-U and Ormerod J (1995) Hydrophobic modification of antenna chlorophyll in Chlorobium during growth with Niels-Ulrik Frigaard, Aline Gomez Maqueo Chew, Julia A. Maresca and Donald A. Bryant acetylene. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 163–166. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frigaard N-U, Vassilieva EV, Li H, Milks KJ, Zhao J and Bryant DA (2001) The remarkable chlorosome. PS2001: Proceedings 12th International Congress on Photosynthesis, S1-003. CSIRO Publishing, Melbourne (CD-ROM)

    Google Scholar 

  • Frigaard N-U, Voigt GD and Bryant DA (2002) Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184: 3368–3376

    PubMed  CAS  Google Scholar 

  • Frigaard N-U, Gomez Maqueo Chew A, Li H, Maresca JA, and Bryant DA (2003) Chlorobium tepidum: Insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78: 93–117

    PubMed  CAS  Google Scholar 

  • Fujita Y and Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits. In vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 275: 23583–23588

    PubMed  CAS  Google Scholar 

  • Gibson LCD and Hunter CN (1994) The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides, encodes S-adenosyl-methionine:Mg-protoporphyrin IX methytransferase. FEBS Lett 352: 127–130

    PubMed  CAS  Google Scholar 

  • Gibson LC, Willows RD, Kannangara CG, von Wettstein D and Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92: 1941–1944

    PubMed  CAS  Google Scholar 

  • Glaeser J, Bañeras L, Rutters H and Overmann J (2002) Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Arch Microbiol 177: 475–485

    PubMed  CAS  Google Scholar 

  • Gloe A and Risch N (1978) Bacteriochlorophyll c S, a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch Microbiol 118: 153–156

    PubMed  CAS  Google Scholar 

  • Gough SP, Petersen BO and Duus JØ (2000) Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc Natl Acad Sci USA 97: 6908–6913

    PubMed  CAS  Google Scholar 

  • Gruber TM and Bryant DA (1998) Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus. Arch Microbiol 170: 285–296

    PubMed  CAS  Google Scholar 

  • Guyoneaud R, Borrego CM, Martinez-Planells A, Buitenhuis ET and Garcia-Gil LJ (2001) Light responses in the green sulfur bacterium Prosthecochloris aestuarii: Changes in prosthecae length, ultrastructure, and antenna pigment composition. Arch Microbiol 176: 278–284

    PubMed  CAS  Google Scholar 

  • Haidl H, Knödlmayr K, Rüdiger W, Scheer H, Schoch S and Ullrich J (1985) Degradation of bacteriochlorophyll a in Rhodopseudomonas sphaeroides R26. Z Naturforsch 40C: 685–692

    CAS  Google Scholar 

  • Hinchigeri SB, Hundle B and Richards WR (1997) Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. FEBS Lett 407: 337–342

    PubMed  CAS  Google Scholar 

  • Holt AS, Purdie WS and Wasley JWF (1966) Structures of Chlorobium chlorophylls. Can J Chem 44: 88–93

    CAS  Google Scholar 

  • Holzwarth AR, Griebenow K and Schaffner K (1992) Chlorosomes, photosynthetic antennae with novel self-organized pigment structures. J Photochem Photobiol A: Chem 65: 61–71

    CAS  Google Scholar 

  • Hörtensteiner S (1999) Chlorophyll breakdown in higher plants and algae. Cell Mol Life Sci 56: 330–347

    PubMed  Google Scholar 

  • Huster MS and Smith KM (1990) Biosynthetic-studies of substituent homologation in bacteriochlorophylls c and d. Biochemistry 29: 4348–4355

    PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD, Henninsen KW and Hunter CN (1996) Expression of the ChlI, ChlD, and ChlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271: 16662–16667

    PubMed  CAS  Google Scholar 

  • Johnson HA, Pelletier DA, and Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183: 4536–4542

    PubMed  CAS  Google Scholar 

  • Karger GA, Reid JD and Hunter CN (2001) Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 40: 9291–9299

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N and Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with Δ 2,6-phytadienol. Photosynth Res 63: 269–280

    PubMed  CAS  Google Scholar 

  • Larsen KL, Cox RP and Miller M (1994) Effects of illumination intensity on bacteriochlorophyll c homolog distribution in Chloroflexus aurantiacus grown under controlled conditions. Photosynth Res 41: 151–156

    CAS  Google Scholar 

  • Larsen KL, Cox RP and Miller M (1995) Incorporation of exogenous long-chain alcohols into bacteriochlorophyll c homologs by Chloroflexus aurantiacus. Arch Microbiol 163: 119–123

    CAS  Google Scholar 

  • Majumdar D, Avissar YJ, Wyche JH and Beale SI (1991) Structure and expression of the Chlorobium vibrioforme hemA gene. Arch Microbiol 156: 281–189

    PubMed  CAS  Google Scholar 

  • Maresca JA, Gomez Maqueo Chew A, Ros Ponsatí M, Frigaard N-U, Ormerod JG, and Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186: 2558–2566

    PubMed  CAS  Google Scholar 

  • Matile P (2000) Biochemistry of Indian summer: Physiology of autumnal leaf coloration. Exper Gerontol 35: 145–158

    CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H and Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112: 1403–1409

    PubMed  CAS  Google Scholar 

  • Matile P, Hörtensteiner S and Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50: 67–95

    PubMed  CAS  Google Scholar 

  • McGlynn P and Hunter CN (1993) Genetic analysis of the bchC and bchA genes of Rhodobacter sphaeroides. Mol Gen Genet 236: 227–234

    PubMed  CAS  Google Scholar 

  • Montaño GA, Wu H-M, Lin S, Brune DC and Blankenship RE (2003) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42: 10246–10251

    PubMed  Google Scholar 

  • Nagata N, Tanaka R, Satoh S and Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17: 233–240

    PubMed  CAS  Google Scholar 

  • Naylor, GW, Addlesee HA, Gibson LCD and Hunter CN (1999) The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynth Res 62: 121–139

    CAS  Google Scholar 

  • Niedermeier G, Shiozawa JA, Lottspeich F and Feick RG (1994) Primary structure of two chlorosome proteins from Chloroflexus aurantiacus. FEBS Lett 342: 61–65

    PubMed  CAS  Google Scholar 

  • Oelze J and Golecki JR (1995) Membranes and chlorosomes of green bacteria: Structure, composition and development. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 259–278. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ormerod JG, Nesbakken T and Beale SI (1990) Specific inhibition of antenna bacteriochlorophyll synthesis in Chlorobium vibrioforme by anesthetic gases. J Bacteriol 172: 1352–1360

    PubMed  CAS  Google Scholar 

  • Oster U, Bauer CE and Rüdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272: 9671–9676

    PubMed  CAS  Google Scholar 

  • Petersen BL, Jensen PE, Gibson LCD, Stummann BM, Hunter CN and Henningsen KW (1998a) Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J Bacteriol 180: 699–704

    CAS  Google Scholar 

  • Petersen BL, Møller MG, Stummann BM and Henningsen KW (1998b) Structure and organization of a 25 kbp region of the genome of the photosynthetic green sulfur bacterium Chlorobium vibrioforme containing Mg-chelatase encoding genes. Hereditas 129: 131–142

    CAS  Google Scholar 

  • Pierson BK and Castenholz RW (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 31–47. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pinta V, Picaud M, Reiss-Husson F, and Astier C (2002) Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 184: 746–753

    PubMed  CAS  Google Scholar 

  • Porra RJ (1997) Recent progress in porphyrin and chlorophyll biosynthesis. Photochem Photobiol 65: 492–516

    CAS  Google Scholar 

  • Rhie G, Avissar YJ and Beale SI (1996) Structure and expression of the Chlorobium vibrioforme hemB gene and characterization of its encoded enzyme porphobilinogen synthase. J Biol Chem 271: 8176–8182

    PubMed  CAS  Google Scholar 

  • Richards WR and Rapoport H (1966) The biosynthesis of Chlorobium chlorophylls-660. The isolation and purification of porphyrins from Chlorobium thiosulfatophilum-660. Biochemistry 5: 1079–1089

    PubMed  CAS  Google Scholar 

  • Richards WR and Rapoport H (1967) The biosynthesis of Chlorobium chlorophylls-660. The production of magnesium protoporphyrin monomethyl ester, bacteriochlorophyll, and Chlorobium pheoporphyrins by Chlorobium thiosulfatophilum- 660. Biochemistry 6: 3830–3840

    PubMed  CAS  Google Scholar 

  • Rieble S, Ormerod JG and Beale SI (1989) Transformation of glutamate to delta-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme. J Bacteriol 171: 3782–3787

    PubMed  CAS  Google Scholar 

  • Sakuragi Y, Frigaard N-U, Shimada K and Matsuura K (1999) Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1413: 172–180

    PubMed  CAS  Google Scholar 

  • Schoch S, Scheer H, Schiff JA, Rüdiger W and Siegelman HW (1981) Pyropheophytin a accompanies pheophytin a in darkened light grown cells of Euglena. Z Naturforsch 36C: 827–833

    CAS  Google Scholar 

  • Schoch S, Oster U, Mayer K, Feick R and Rüdiger W (1999) Substrate specificity of overexpressed bacteriochlorophyll synthases from Chloroflexus aurantiacus. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 213–216. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Senge MO and Smith KM (1995) Biosynthesis and structures of the bacteriochlorophylls. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 137–151. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shimokawa K, Hashizume A and Shioi Y (1990) Pyropheophorbide a, a catabolite of ethylene-induced chlorophyll a degradation. Phytochemistry 29: 2105–2106

    CAS  Google Scholar 

  • Smith KM (1991) The structure and biosynthesis of bacteriochlorophylls. In Jordan PM (ed) Biosynthesis of Tetrapyrroles, pp 237–255. Elsevier Science Publ, Amsterdam

    Google Scholar 

  • Smith KM (1994) Nomenclature of the bacteriochlorophylls c, d, and e. Photosynth Res 41: 23–26

    CAS  Google Scholar 

  • Smith KM (2003) Chlorosome chlorophylls (Bacteriochlorophylls c, d, and e): structures, partial syntheses, and biosynthetic proposals. In: Kadish KM, Smith KM, and Guilard R (eds) The Porphyrin Handbook, Vol 13, pp 157–182. Elsevier Science, New York.

    Google Scholar 

  • Smith KM and Huster MS (1987) Bacteriochlorophyll-c formation via the glutamate C-5 pathway in Chlorobium bacteria. J Chem Soc Chem Commun: 14–16

    Google Scholar 

  • Smith KM and Simpson DJ (1986) Stereochemistry of the bacteriochlorophyll- e homologues. J Chem Soc Chem Commun: 1682–1684

    Google Scholar 

  • Smith KM, Goff DA, Fajer J and Barkigia JM (1982) Chirality and structures of bacteriochlorophylls d. J Am Chem Soc 104: 3747–3749

    CAS  Google Scholar 

  • Smith KM, Goff DA, Fajer J and Barkigia KM (1983a) Isolation and characterization of two new bacteriochlorophyll d bearing neopentyl substituents. J Am Chem Soc 105: 1674–1676

    CAS  Google Scholar 

  • Smith KM, Craig, GW, Kehres LA and Pfennig N (1983b) Reversed phase HPLC and structural assignments of the bacteriochlorophylls c. J Chromatogr 281: 209–223

    CAS  Google Scholar 

  • Steensgaard DB, Cox RP, and Miller M (1996) Manipulation of the bacteriochlorophyll c homolog distribution in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 48: 385–393

    CAS  Google Scholar 

  • Suzuki JY and Bauer CE (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. J Biol Chem 270: 3732–3740

    PubMed  CAS  Google Scholar 

  • Suzuki JY, Bollivar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31: 61–89

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Doi M, and Shioi Y (2002) Two enzymatic reaction pathways in the formation of pyropheophorbide a. Photosynth Res 74: 225–233

    PubMed  CAS  Google Scholar 

  • Swanson KL and Smith KM (1990) Biosynthesis of bacteriochlorophyll- c via the glutamate C-5 pathway in Chloroflexus aurantiacus. J Chem Soc Chem Commun 1990: 1696–1697

    Google Scholar 

  • Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, and Cogdell, RJ (eds), The Photochemistry of Carotenoids, pp 39–69. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Takaichi S, Tsuji K, Matsuura K and Shimada K (1995) A monocyclic carotenoid glucoside ester is a major carotenoid in the green filamentous bacterium Chloroflexus auranatiacus. Plant Cell Physiol 36: 773–778

    CAS  Google Scholar 

  • Takaichi S, Wang Z-Y, Umetsu M, Nozawa T, Shimada K and Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′,2′-dihydro-β- carotene, 1′, 2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 168: 270–276

    PubMed  CAS  Google Scholar 

  • Takamiya K-I, Tsuchiya T, and Ohta H (2000) Degradation pathway(s) of chlorophyll: What has gene cloning revealed? Trends Plant Sci 5: 426–431

    PubMed  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    PubMed  CAS  Google Scholar 

  • van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR and de Groot HJ (2001) A refined model of the chlorosomal antenna of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40: 1587–1595

    PubMed  Google Scholar 

  • Wechsler TD, Brunisholz RA, Frank G, Suter F and Zuber H (1987) The complete amino acid sequence of the antenna polypeptide B806-B866-β from the cytoplasmic membrane of the green bacterium Chloroflexus aurantiacus. FEBS Lett 210: 189–194

    CAS  Google Scholar 

  • Wechsler TD, Brunisholz RA, Frank G and Zuber H (1991) Isolation and protein chemical characterization of the B806- B866 antenna complex of the green thermophilic bacterium Chloroflexus aurantiacus. J Photochem Photobiol B: Biol 8: 189–197

    CAS  Google Scholar 

  • Wellington CL and Beatty JT (1989) Promoter mapping and nucleotide sequence of the bchC bacteriochlorophyll biosynthesis gene from Rhodobacter capsulatus. Gene 83: 251–161.

    PubMed  CAS  Google Scholar 

  • Willows RD (2003) Biosynthesis of chlorophylls from protoporphyrin IX. Nat Prod Rep 20: 327–341

    PubMed  CAS  Google Scholar 

  • Willows RD and Beale SI (1998) Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J Biol Chem 273: 34206–34213

    PubMed  CAS  Google Scholar 

  • Willows RD, Gibson LC, Kanangara CG, Hunter CN and von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 1996 235: 438–443

    CAS  Google Scholar 

  • Xiong J, Inoue, K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95: 14851–14856

    PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    PubMed  CAS  Google Scholar 

  • Ziegler R, Blaheta A, Guha N and Schönegge B (1988) Enzymatic formation of pheophorbide and pyropheophorbide during chlorophyll degradation in a mutant of Chlorella fusca Shihira et Kraus. J Plant Physiol 132: 327–332

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Frigaard, NU., Maqueo Chew, A., Maresca, J.A., Bryant, D.A. (2006). Bacteriochlorophyll Biosynthesis in Green Bacteria. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_15

Download citation

Publish with us

Policies and ethics