Skip to main content
Log in

Dynamic properties of photosystem II membranes at physiological temperatures characterized by elastic incoherent neutron scattering. Increased flexibility associated with the inactivation of the oxygen evolving complex

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Elastic incoherent neutron scattering (EINS), a non-invasive technique which is capable of measuring the mean square displacement of atoms in the sample, has been widely used in biology for exploring the dynamics of proteins and lipid membranes but studies on photosynthetic systems are scarce. In this study we investigated the dynamic characteristics of Photosystem II (PSII) membrane fragments between 280 and 340 K, i.e., in the physiological temperature range and in the range of thermal denaturation of some of the protein complexes. The mean square displacement values revealed the presence of a hydration-sensitive transition in the sample between 310 and 320 K, suggesting that the oxygen evolving complex (OEC) plays an important role in the transition. Indeed, in samples in which the OEC had been removed by TRIS- or heat-treatments (323 and 333 K) no such transition was found. Further support on the main role of OEC in these reorganizations is provided by data obtained from differential scanning calorimetry experiments, showing marked differences between the untreated and TRIS-treated samples. In contrast, circular dichroism spectra exhibited only minor changes in the excitonic interactions below 323 K, showing that the molecular organization of the pigment-protein complexes remains essentially unaffected. Our data, along with earlier incoherent neutron scattering data on PSII membranes at cryogenic temperatures (Pieper et al., Biochemistry 46:11398–11409, 2007), demonstrate that this technique can be applied to characterize the dynamic features of PSII membranes, and can be used to investigate photosynthetic membranes under physiologically relevant experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBY:

Photosystem II membrane fragments

Chl:

Chlorophyll

CD:

Circular dichroism

DGDG:

Digalactosyl-diacylglycerol

DMPC:

1,2-dimyristoyl-sn-glycero-3-phosphocholine

DSC:

Differential scanning calorimetry

EINS:

Elastic incoherent neutron scattering

LHCII:

The main light-harvesting complex of PS II

MGDG:

Monogalactosyl-diacylglycerol

PG:

Phosphatidylglycerol

PSII:

Photosystem II

r.h.:

Relative humidity

SQDG:

Sulfoquinovosyl-diacylglycerol

TRIS:

Tris-(hydroxymethyl)aminomethane

References

  • Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66(2):213–221

    Article  PubMed  Google Scholar 

  • Alfonso M, Montoya G, Cases R, Rodriguez R, Picorel R (1994) Core antenna complexes, CP43 and CP47, of higher plant photosystem II Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33(34):10494–10500

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003) State transitions—a question of balance. Science 299(5612):1530–1532

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6(7):317–326

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM (1999) Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust J Plant Physiol 26(7):625–639

    Article  CAS  Google Scholar 

  • Anderson JM, Andersson B (1988) The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem Sci 13(9):351–355

    Article  PubMed  CAS  Google Scholar 

  • Barra M, Haumann M, Dau H (2005) Specific loss of the extrinsic 18 KDa protein from photosystem II upon heating to 47 degrees C causes inactivation of oxygen evolution likely due to Ca release from the Mn-complex. Photosynth Res 84(1–3):231–237

    Article  PubMed  CAS  Google Scholar 

  • Barzda V, Istokovics A, Simidjiev I, Garab G (1996) Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment-protein complexes. Light-induced reversible structural changes associated with energy dissipation. Biochemistry 35(27):8981–8985

    Article  PubMed  CAS  Google Scholar 

  • Bellissent-Funel MC, Filabozzi A, Chen SH (1997) Measurement of coherent Debye-Waller factor in in vivo deuterated C-phycocyanin by inelastic neutron scattering. Biophys J 72(4):1792–1799

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Breemen JF, van Roon H, Dekker JP (2000) Conformational changes in photosystem II supercomplexes upon removal of extrinsic subunits. Biochemistry 39(42):12907–12915

    Article  PubMed  CAS  Google Scholar 

  • Chow WS, Melis A, Anderson JM (1990) Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA 87(19):7502–7506

    Article  PubMed  CAS  Google Scholar 

  • Chuartzman SG, Nevo R, Shimoni E, Charuvi D, Kiss V, Ohad I, Brumfeld V, Reich Z (2008) Thylakoid membrane remodeling during state transitions in arabidopsis. Plant Cell 20(4):1029–1039

    Article  PubMed  CAS  Google Scholar 

  • Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50(1):760–763

    Article  Google Scholar 

  • Cramer WA, Whitmarsh J, Low PS (1981) Differential scanning calorimetry of chloroplast membranes: identification of an endothermic transition associated with the water-splitting complex of photosystem II. Biochemistry 20(1):157–162

    Article  PubMed  CAS  Google Scholar 

  • Dall’Osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17(4):1217–1232

    Article  PubMed  Google Scholar 

  • Dekker JP, Boekema EJ, Witt HT, Rogner M (1988) Refined purification and further characterization of oxygen-evolving and Tris-treated Photosystem II particles from the thermophilic Cyanobacterium synechococcus sp. Biochim Biophys Acta Bioenerg 936(3):307–318

    Article  CAS  Google Scholar 

  • Dobrikova AG, Varkonyi Z, Krumova SB, Kovacs L, Kostov GK, Todinova SJ, Busheva MC, Taneva SG, Garab G (2003) Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry 42(38):11272–11280

    Article  PubMed  CAS  Google Scholar 

  • Dorne AJ, Joyard J, Douce R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci USA 87(1):71–74

    Article  PubMed  CAS  Google Scholar 

  • Doster W (2008) The dynamical transition of proteins, concepts and misconceptions. Eur Biophys J 37(5):591–602

    Article  PubMed  CAS  Google Scholar 

  • Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337(6209):754–756

    Article  PubMed  CAS  Google Scholar 

  • Douce R, Joyard J (1996) Biosynthesis of thylakoid membrane lipids. In: Ort DR, Yocum CF (eds) Advances in photosynthesis/oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Duchene S, Siegenthaler P (2000) Do glycerolipids display lateral heterogeneity in the thylakoid membrane. Lipids 35(7):739–744

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? Biochim Biophys Acta 1186(1–2):52–58

    CAS  Google Scholar 

  • Ferrand M, Dianoux AJ, Petry W, Zaccai G (1993) Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci USA 90(20):9668–9672

    Article  PubMed  CAS  Google Scholar 

  • Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G (2002) Protein dynamics studied by neutron scattering. Q Rev Biophys 35(4):41

    Article  Google Scholar 

  • Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101(2–3):135–146

    Article  PubMed  CAS  Google Scholar 

  • Garab G, Lohner K, Laggner P, Farkas T (2000) Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci 5(11):489–494

    Article  PubMed  CAS  Google Scholar 

  • Garab G, Cseh Z, Kovács L, Rajagopal S, Várkonyi Z, Wentworth M, Mustárdy L, Dér A, Ruban AV, Papp E, Holzenburg A, Horton P (2002) Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: thermo-optic mechanism. Biochemistry 41(51):15121–15129

    Article  PubMed  CAS  Google Scholar 

  • Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: application in biology and nanoscience. J Biomol Tech 21(4):167–193

    PubMed  Google Scholar 

  • Grudziński W, Krupa Z, Garstka M, Maksymiec W, Swartz TE, Gruszecki WI (2002) Conformational rearrangements in light-harvesting complex II accompanying light-induced chlorophyll a fluorescence quenching. Biochim Biophys Acta 1554(1–2):108–117

    PubMed  Google Scholar 

  • Gruszecki WI, Grudzinski W, Gospodarek M, Patyra M, Maksymiec W (2006) Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems. Biochim Biophys Acta 1757(11):1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Haferkamp S, Kirchhoff H (2008) Significance of molecular crowding in grana membranes of higher plants for light harvesting by photosystem II. Photosynth Res 95(2–3):129–134

    Article  PubMed  CAS  Google Scholar 

  • Hemelrijk PW, Kwa SLS, van Grondelle R, Dekker JP (1992) Spectroscopic properties of LHC-II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. Biochim Biophys Acta 1098(2):159–166

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275(6):1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Istokovics A, Simidjiev I, Lajkó F, Garab G (1997) Characterization of the light induced reversible changes in the chiral macroorganization of the chromophores in chloroplast thylakoid membranes. Temperature dependence and effect of inhibitors. Photosynth Res 54(1):45–53

    Article  CAS  Google Scholar 

  • Iwai M, Yokono M, Inada N, Minagawa J (2010) Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc Natl Acad Sci USA 107(5):2337–2342

    Article  PubMed  CAS  Google Scholar 

  • Joshi M, Fragata M (1999) Heat-induced changes in the photochemical centres and the protein secondary structures of photosystem II studied by variable fluorescence and difference FT-IR spectroscopy. Z Naturforsch C 54(1–2):35–43

    PubMed  CAS  Google Scholar 

  • Keough KMW, Davis PJ (1979) Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines. Biochemistry 18(8):1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff H, Mukherjee U, Galla HJ (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. Biochemistry 41(15):4872–4882

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff H, Tremmel I, Haase W, Kubitscheck U (2004) Supramolecular photosystem II organization in grana thylakoid membranes: evidence for a structured arrangement. Biochemistry 43(28):9204–9213

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff H, Lenhert S, Buchel C, Chi L, Nield J (2008) Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. Biochemistry 47(1):431–440

    Article  PubMed  CAS  Google Scholar 

  • Knox PP, Garab G (1982) The effect of a permanent electric field on thermoluminescence of chloroplasts. Photochem Photobiol 35(5):733–736

    Article  Google Scholar 

  • Kóta Z, Szalontai B, Droppa M, Horváth G, Páli T (2002) The formation of an inverted hexagonal phase from thylakoid membranes upon heating. Cell Mol Biol Lett 7(1):126–128

    PubMed  Google Scholar 

  • Krumova SB, Todinova SJ, Busheva MC, Taneva SG (2005) Kinetic nature of the thermal destabilization of LHCII macroaggregates. J Photochem Photobiol B Biol 78(2):165–170

    Article  CAS  Google Scholar 

  • Krumova SB, Dijkema C, de Waard P, Van As H, Garab G, van Amerongen H (2008a) Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. Biochim Biophys Acta 1778(4):997–1003

    Article  PubMed  CAS  Google Scholar 

  • Krumova SB, Koehorst RBM, Bóta A, Páli T, van Hoek A, Garab G, van Amerongen H (2008b) Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochim Biophys Acta 1778(12):2823–2833

    Article  PubMed  CAS  Google Scholar 

  • Krumova SB, Todinova SJ, Dobrikova AG, Taneva SG (2011) Differential scanning calorimetry of photosynthetic membranes: Resolving contributions of the major photosynthetic complexes to the sequential thermal transitions. Trends Photochem Photobiol 12:37–51

    Google Scholar 

  • Kucerka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88(4):2626–2637

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Murata N (1983) Quantitative analysis of the inactivation of photosynthetic oxygen evolution and the release of polypeptides and manganese in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol 24(4):741–747

    CAS  Google Scholar 

  • Lambrev PH, Tsonev T, Velikova V, Georgieva K, Lambreva MD, Yordanov I, Kovács L, Garab G (2007a) Trapping of the quenched conformation associated with non-photochemical quenching of chlorophyll fluorescence at low temperature. Photosynth Res 94(2–3):321–332

    Article  PubMed  CAS  Google Scholar 

  • Lambrev PH, Várkonyi Z, Krumova S, Kovács L, Miloslavina Y, Holzwarth AR, Garab G (2007b) Importance of trimer–trimer interactions for the native state of the plant light-harvesting complex II. Biochim Biophys Acta 1767(6):847–853

    Article  PubMed  CAS  Google Scholar 

  • Lechner RE, Dencher NA, Fitter J, Dippel T (1994) Two-dimensional proton diffusion on purple membrane. Solid State Ion 70–71(1):296–304

    Article  Google Scholar 

  • Low PS, Ort DR, Cramer WA, Whitmarsh J, Martin B (1984) Search for an endotherm in chloroplast lamellar membranes associated with chilling-inhibition of photosynthesis. Arch Biochem Biophys 231(2):336–344

    Article  PubMed  CAS  Google Scholar 

  • Magazù S, Migliardo F, Benedetto A (2010) Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme. J Phys Chem B 114(28):9268–9274

    Article  PubMed  Google Scholar 

  • Nash D, Miyao M, Murata N (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta Bioenerg 807(2):127–133

    Article  CAS  Google Scholar 

  • Natali F, Peters J, Russo D, Barbieri S, Chiapponi C, Cupane A, Deriu A, Di Bari MT, Fahi E, Gerelli Y, Mariani P, Paciarioni A, Rivasseau C, Schiro G, Sonvico F (2008) IN13 backscattering spectrometer at ILL: looking for motions in biological macromolecules and organisms. Neutron News 19(4):14–18

    Article  Google Scholar 

  • Newell WR, van Amerongen H, van Grondelle R, Aalberts JW, Drake AF, Udvarhelyi P, Barber J (1988) Spectroscopic characterisation of the reaction centre of photosystem II from higher plants. FEBS Lett 228(1):162–166

    Article  CAS  Google Scholar 

  • Nolan WG, Hopkins HP, Kalini SAM (1992) Differential scanning calorimetric investigation of pea chloroplast thylakoids and thylakoid fractions. Arch Biochem Biophys 297(1):19–27

    Article  PubMed  CAS  Google Scholar 

  • O’Brien FEM (1948) The control of humidity by saturated salt solutions. J Sci Instrum 25(3):73–76

    Article  Google Scholar 

  • Orecchini A, Paciaroni A, Bizzarri AR, Cannistraro S (2001) Low-frequency vibrational anomalies in β-lactoglobulin: Contribution of different hydrogen classes revealed by inelastic neutron scattering. J Phys Chem B 105(48):12150–12156

    Article  CAS  Google Scholar 

  • Páli T, Garab G, Horváth LI, Kóta Z (2003) Functional significance of the lipid-protein interface in photosynthetic membranes. Cell Mol Life Sci 60(8):1591–1606

    Article  PubMed  Google Scholar 

  • Pieper J, Renger G (2009) Protein dynamics investigated by neutron scattering. Photosynth Res 102(2–3):281

    Google Scholar 

  • Pieper J, Hauß T, Buchsteiner A, Baczyn′ski K, Adamiak K, Lechner RE, Renger G (2007) Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering. Biochemistry 46:11398–11409

    Article  PubMed  CAS  Google Scholar 

  • Pieper J, Hauß T, Buchsteiner A, Renger G (2008) The effect of hydration on protein flexibility in photosystem II of green plants studied by quasielastic neutron scattering. Eur Biophys J 37(5):657–663

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Singwi KS, Sjölander A (1962) Theory of slow neutron scattering by liquids I. Phys Rev 126(3):986–996

    Article  CAS  Google Scholar 

  • Raison JK, Wright LC (1983) Thermal phase transitions in the polar lipids of plant membranes their induction by disaturated phospholipids and their possible relation to chilling injury. Biochim Biophys Acta 731(1):69–78

    Article  CAS  Google Scholar 

  • Reat V, Zaccai G, Ferrand M, Pfister C (1997) Functional dynamics in purple membrane. In: Cusack S, Buuttner H, Ferrand M, Langan P, Timmins P (eds) Biological macromolecular dynamics. Adeline Press, Schenectady, pp 117–122

    Google Scholar 

  • Reat V, Patzelt H, Ferrand M, Pfister C, Oesterhelt D, Zaccai G (1998) Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc Natl Acad Sci USA 95(9):4970–4975

    Article  PubMed  CAS  Google Scholar 

  • Richard D, Ferrand M, Kearley GJ (1996) Analysis and visualisation of neutron-scattering data. J Neutron Res 4(1–4):33–39

    Article  Google Scholar 

  • Rochaix J (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581(15):2768–2775

    Article  PubMed  CAS  Google Scholar 

  • Schaller S, Latowski D, Jemioła-Rzemińska M, Dawood A, Wilhelm C, Strzałka K, Goss R (2011) Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochim Biophys Acta 1807(3):326–335

    Article  PubMed  CAS  Google Scholar 

  • Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3(3):26–37

    Article  Google Scholar 

  • Simidjiev I, Stoylova S, Amenitsch H, Jávorfi T, Mustárdy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97(4):1473–1476

    Article  PubMed  CAS  Google Scholar 

  • Smith GS, Sirota EB, Safinya CR, Clark NA (1988) Structure of the Lβ phases in a hydrated phosphatidylcholine multimembrane. Phys Rev Lett 60(9):813–816

    Article  PubMed  CAS  Google Scholar 

  • Stadler AM, Digel I, Embs JP, Unruh T, Tehei M, Zaccai G, Büldt G, Artmann GM (2009) From powder to solution: hydration dependence of human hemoglobin dynamics correlated to body temperature. Biophys J 96(12):5073–5081

    Article  PubMed  CAS  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kuhlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24(5):919–928

    Article  PubMed  CAS  Google Scholar 

  • Thompson LK, Sturtevant JM, Brudvig GW (1986) Differential scanning calorimetric studies of photosystem II: evidence for a structural role for cytochrome b559 in the oxygen-evolving complex. Biochemistry 25(20):6161–6169

    Article  PubMed  CAS  Google Scholar 

  • Thompson LK, Blaylock R, Sturtevant JM, Brudvig GW (1989) Molecular basis of the heat denaturation of photosystem II. Biochemistry 28(16):6686–6695

    Article  PubMed  CAS  Google Scholar 

  • Tóth SZ, Puthur JT, Nagy V, Garab G (2009) Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes. Plant Physiol 149(3):1568–1578

    Article  PubMed  Google Scholar 

  • Tóth SZ, Nagy V, Puthur JT, Kovacs L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156(1):382–392

    Article  PubMed  Google Scholar 

  • Trapp M, Gutberlet T, Juranyi F, Unruh T, Demé B, Tehei M, Peters J (2010) Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering. J Chem Phys 133(16):164505

    Article  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution 1.9 Å. Nature 473(7345):55–60

    Article  PubMed  CAS  Google Scholar 

  • Várkonyi Z, Nagy G, Lambrev P, Kiss AZ, Székely N, Rosta L, Garab G (2009) Effect of phosphorylation on the thermal and light stability of the thylakoid membranes. Photosynth Res 99(3):161–171

    Article  PubMed  Google Scholar 

  • Volker M, Ono T, Inoue Y, Renger G (1985) Effect of trypsin on PS-II particles correlation between Hill-activity, Mn-abundance and peptide pattern. Biochim Biophys Acta 806(1):25–34

    Article  Google Scholar 

  • Williams WP (1998) The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Siegenthaler P, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, London

    Google Scholar 

  • Williams WP, Quinn PJ (1987) The phase behavior of lipids in photosynthetic membranes. J Bioenerg Biomembr 19(6):605–624

    Article  PubMed  CAS  Google Scholar 

  • Wood K, Plazanet M, Gabel F, Kessler B, Oesterhelt D, Tobias DJ, Zaccai G, Weik M (2007) Coupling of protein and hydration-water dynamics in biological membranes. Proc Natl Acad Sci USA 104(46):18049–18054

    Article  PubMed  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 57(1):51–59

    Article  CAS  Google Scholar 

  • Yang C, Boggasch S, Haase W, Paulsen H (2006) Thermal stability of trimeric light-harvesting chlorophyll a/b complex 3 (LHCIIb) in liposomes of thylakoid lipids. Biochim Biophys Acta 1757(12):1642–1648

    Article  PubMed  CAS  Google Scholar 

  • Zaccai G (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288:1604–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Institut Laue-Langevin (Grenoble, France) for providing us beamtime for the experiments. We are indebted for Dr. Francesca Natali and Teddy Carriere (ILL., Grenoble) for helping us with the configuration of the experiments. We also wish to thank Dr. Zsuzsanna Várkonyi and Dr. Ottó Zsíros (BRC, Szeged) for participating in the preparation of BBY samples, Dr. Mira Busheva and Svetla Todinova for the DSC measurements and Dr. Stuart Fisher for the calculations of the isotopic composition of the protein complexes in the investigated sample. This study was supported by the Marie Curie Initial Training Network ‘HARVEST’ sponsored by the 7th Framework Program of the European Union [No. 238017] and by the Hungarian Scientific Research Fund/National Office for Research and Technology [No. 80345] grants to G. G. and Bourse du Gouvernement Français to G.N.; J. P. gratefully acknowledges support by the European Social Fund’s Doctoral Studies and Internationalisation Programme DoRa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Peters.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, G., Pieper, J., Krumova, S.B. et al. Dynamic properties of photosystem II membranes at physiological temperatures characterized by elastic incoherent neutron scattering. Increased flexibility associated with the inactivation of the oxygen evolving complex. Photosynth Res 111, 113–124 (2012). https://doi.org/10.1007/s11120-011-9701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9701-x

Keywords

Navigation