Skip to main content

Advertisement

Log in

Interactions of linker proteins with the phycobiliproteins in the phycobilisome substructures of Gloeobacter violaceus

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Gloeobacter violaceus PCC 7421 is a unicellular oxygenic photosynthetic organism, which precedes the diversification of cyanobacteria in the phylogenetic tree. It is the only cyanobacterium that does not contain internal membranes. The unique structure of the rods of the phycobilisome (PBS), grouped as one bundle of six parallel rods, distinguishes G. violaceus from the other PBS-containing cyanobacteria. It has been proposed that unique multidomain rod-linkers are responsible for this peculiarly organized shape. However, the localization of the multidomain linkers Glr1262 and Glr2806 in the PBS-rods remains controversial (Koyama et al. 2006, FEBS Lett 580:3457–3461; Krogmann et al. 2007, Photosynth Res 93:27–43). To further increase our understanding of the structure of the G. violaceus PBS, the identification of the proteins present in fractions obtained from sucrose gradient centrifugation and from native electrophoresis of partially dissociated PBS was conducted. The identification of the proteins, after electrophoresis, was done by spectrophotometry and mass spectrometry. The results support the localization of the multidomain linkers as previously proposed by us. The Glr1262 (92 kDa) linker protein was found to be the rod-core linker LRC92, and Glr2806 (81 kDa), a special rod linker LR81 that joins six disks of hexameric PC. Consequently, we propose to designate glr1262 as gene cpcGm (encoding LRC92) and glr2806 as gene cpcJm (encoding LR81). We also propose that the cpeC (glr1263) gene encoding LR31.8 forms the interface that binds PC to PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Allophycocyanin

apcAB :

Gene encoding the α and β subunits of allophycocyanin

apcC :

Gene encoding the 8-kDa core linker polypeptide

ApcE:

The 129-kDa core membrane linker phycobiliprotein

A.U.:

Absorbance units

cpcBA :

Genes encoding the α and β subunits of phycocyanin

cpcC1 :

Gene encoding the PC-rod linker polypeptide

cpcD :

Gene encoding the 9-kDa rod linker polypeptide

cpcG :

Gene encoding the rod-core linker polypeptide

CpcG:

The rod-core linker polypeptide

DCPIP:

Dichlorophenol-indophenol

DMF:

Dimethyl-formamide

Da:

Dalton

DTT:

Dithiothreitol

EDTA:

Ethylenediamine tetraacetic acid

FNR:

Ferredoxin-NADP+ oxidoreductase

FNR-2D:

FNR containing only the two catalytic domains

FNR-3D:

FNR containing three domains (the CpcD-like domain and two catalytic domains)

LC/ESI/MS/MS:

Liquid-Chromatography/Electro-Spray-Ionization/tandem Mass-Spectrometry

LC 8 :

Core linker polypeptide of 8 kDa

LCM 130 :

The 130-kDa, core membrane protein

LR 7.8 :

The 7.8-kDa, phycocyanin-associated rod linker polypeptide

LR 31, CpcC:

The PC-rod linker polypeptide

M w :

Molecular weight

nm:

nanometers

ORF:

Open reading frame

PAGE:

Polyacrylamide gel electrophoresis

PBP(s):

Phycobiliprotein(s)

PBS:

Phycobilisome(s)

PC:

Phycocyanin

PE:

Phycoerythrin

petH :

Gene encoding FNR

PMF:

Protein mass fingerprinting

PMSF:

Phenyl-methylsulfonyl fluoride

PSI:

Photosystem I

REP:

Repetitive sequence

SDS:

Sodium dodecylsulfate

TCA:

Trichloroacetic acid

WCE:

Whole-cell extract

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped Blast and PSI Blast: a new generation of protein data base search programs. Nucleic Acid Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Baginsky S, Shteiman-Kotler A, Liveanu V, Yehudai-Resheff S, Bellaoui M, Settlage RE, Shabanowitz J, Hunt DF, Schuster G, Gruissem W (2001) Chloroplast PNPase exists as a homo-multimer enzyme complex that is distinct from the Escherichia coli degradosome. RNA 7:1464–1475

    CAS  PubMed  Google Scholar 

  • Bryant DA, Cohen-Bazire G, Glazer AN (1981) Characterization of the biliproteins of Gloeobacter violaceus chromophore content of a cyanobacterial phycoerythrin carrying phycourobilin chromophore. Arch Microbiol 129:190–198

    Article  CAS  Google Scholar 

  • Capuano V, Braux AS, Tandeau de Marsac N, Houmard J (1991) The anchor polypeptide of cyanobacterial phycobilisomes. J Biol Chem 266:7239–7247

    CAS  PubMed  Google Scholar 

  • de Lorimier R, Bryant DA, Stevens SE (1990) Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim Biophys Acta 1019:29–41

    Article  PubMed  Google Scholar 

  • Ducret A, Müller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A (1998) Reconstitution, characterization and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 278:369–388

    Article  CAS  PubMed  Google Scholar 

  • Füglistaller P, Mimuro M, Suter F, Zuber H (1987) Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus. Influence of the linker polypeptide Lc 8.9 on the spectral properties of the phycobiliprotein subunits. Biol Chem Hoppe Seyler 368:353–367

    PubMed  Google Scholar 

  • Glauser M, Sidler WA, Graham KW, Bryant DA, Frank G, Wehrli E, Zuber H (1992) Three C-phycoerythrin-associated linker polypeptides in the phycobilisome of green-light-grown Calothrix sp. PCC 7601(cyanobacteria) FEBS Lett 297:19–23

    Google Scholar 

  • Gómez-Lojero C, Pérez-Gómez B, Krogmann DW, Peña-Diaz A (1997) The tricylindrical core of the phycobilisome of the cyanobacterium Arthrospira (Spirulina) maxima. Int J Biochem Cell Biol 29:959–970

    Article  Google Scholar 

  • Gómez-Lojero C, Pérez-Gómez B, Shen G, Schluchter WM, Bryant DA (2003) Interaction of ferredoxin: NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 42:13800–13811

    Article  PubMed  Google Scholar 

  • Guglielmi G, Cohen-Bazire G, Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129:181–189

    Article  CAS  Google Scholar 

  • Gutiérrez-Cirlos EB, Pérez-Gómez B, Krogmann DW, Gómez-Lojero C (2006) The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. Biochim Biophys Acta 1757:130–134

    Article  PubMed  Google Scholar 

  • Isono T, Katoh T (1987) Subparticles of Anabaena phycobilisomes II. Molecular assembly of allophycocyanin cores in reference to “anchor” protein. Arch Biochem Biophys 256:317–324

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213

    Article  CAS  PubMed  Google Scholar 

  • Kehoe DM, Gutu A (2006) Responding to color: The regulation of complementary chromatic adaptation. Ann Rev Plant Biol 57:127–150

    Article  CAS  Google Scholar 

  • Kinter M, Sherman NE (2000) Mass spectrometric analysis of tryptic digests. In: Desiderio DM, Nibbering NMM (eds) Protein sequencing and identification using tandem mass spectrometry. Wiley-Interscience Inc., New York, USA, pp 147–165

  • Koyama K, Tsuchiya T, Akimoto S, Yokono M, Miyashita H, Mimuro M (2006) New linker proteins in phycobilisomes isolated from cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett 580:3457–3461

    Article  CAS  PubMed  Google Scholar 

  • Krogmann DW, Pérez-Gómez B, Gutiérrez-Cirlos EB, Chagolla-López A, González de la Vara L, Gómez-Lojero C (2007) The presence of multidomain linkers determines the bundle-shape structure of the phycobilisome of the cyanobacterium Gloeobacter violaceus PCC 7421. Photosynth Res 93:27–43

    Article  CAS  PubMed  Google Scholar 

  • Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM & CcaA. J Biol Chem 282:29323–29335

    Article  CAS  PubMed  Google Scholar 

  • Martin RG, Ames BN (1961) A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem 236:1372–1378

    CAS  PubMed  Google Scholar 

  • Meile L, Rohr LM, Geissmann TA, Herensperger M, Teuber M (2001) Characterization of d-Xylulose-5-phosphate/d-fructose-6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol 183:2929–2936

    Article  CAS  PubMed  Google Scholar 

  • Mora P, Rubio V, Cervera J (2002) Mechanism of oligomerization of Escherichia coli carbamoyl phosphate synthetase and modulation by the allosteric effectors. A site-directed mutagenesis study. FEBS Lett 511:6–10

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa Ch, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi Ch, Yamada M, Tabata S (2003a) Complete genome structure of Gloeobacter violaceus PCC7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa Ch, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi Ch, Yamada M, Tabata S (2003b) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylacoids (Supplement). DNA Res 10:181–201

    Article  CAS  PubMed  Google Scholar 

  • Nelissen B, Van de Peer Y, Wilmotte A, De Wachter R (1995) An early origin of plastids within the cyanobacteria divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173

    CAS  PubMed  Google Scholar 

  • Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.Lc 7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96:1363–1368

    Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  • Schägger H, Cramer WA, von Jagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217:220–230

    Article  PubMed  Google Scholar 

  • Schluchter WM, Bryant DA (1992) Molecular characterization of ferredoxin-NADP+ oxidoreductase in cyanobacteria: cloning, sequence of the petH gene of Synechococcus sp. PCC 7002 and studies on the gene product. Biochemistry 31:3092–3102

    Article  CAS  PubMed  Google Scholar 

  • Schneider GJ, Tumer NE, Richaud C, Borbely G (1987) Purification and characterization of RNA polymerase from the cyanobacterium Anabaena 7120. J Biol Chem 262:14633–14639

    CAS  PubMed  Google Scholar 

  • Selstam E, Campbell D (1996) Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421 which lacks sulfoquinovosyl diacylglycerol. Arch Microbiol 166:132–135

    Article  CAS  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 139–216

    Google Scholar 

  • Thoden JB, Huang X, Kim J, Raushel FM, Holden HM (2004) Long-range allosteric transitions in carbamoyl phosphate synthetase. Protein Sci 13:2398–2405

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Ughy B, Ajlani G (2004) Phycobilisome rod mutants in Synechocystis sp. strain PCC 6803. Microbiology 150:4147–4156

    Article  CAS  PubMed  Google Scholar 

  • Xolalpa W, Vallecillo AJ, Lara M, Mendoza-Hernández G, Comini M, Spallek R, Singh M, Espitia C (2007) Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 7:3332–3341

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to Dr Diego González-Halphen for his editorial assistance. We thank Tecilli Cabellos-Avelar and Lourdes Elizabeth Leyva-Castillo for their technical assistance. We also appreciate critical reading of the manuscript by Felipe Alcántara Sánchez. Grant SEP-CONACYT México, Reference Number 46416-Q supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gómez-Lojero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1448 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza-Hernández, G., Pérez-Gómez, B., Krogmann, D.W. et al. Interactions of linker proteins with the phycobiliproteins in the phycobilisome substructures of Gloeobacter violaceus . Photosynth Res 106, 247–261 (2010). https://doi.org/10.1007/s11120-010-9601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9601-5

Keywords

Navigation