Skip to main content
Log in

Integration of ultrasonic and optical sensing systems to assess sugarcane biomass and N-uptake

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Crop canopy optical reflectance and ultrasonic sensors provide a means of estimating the spatial variability of biomass and nitrogen uptake by sugarcane during the in-season period. The objective of this paper is to assess the crop canopy reflectance and ultrasonic crop height for predicting sugarcane biomass and N-uptake until the later fertilization stages. An ultrasonic sensor was deployed to measure canopy height, which were combined with optical reflectance sensor to characterize the spatial variability of the crop growth in four commercial fields in southeast Brazil during three different growing stages for dry and wet seasons. Ten sampling location points in each field were defined to determine plant biomass and N-uptake through traditional measurements. The points in each field were used to relate the actual biomass and N-uptake with the sensor data and compare them using the coefficient of determination and standard errors; this defined the best approach in each situation according to the multivariable statistics. It was found that both sensor systems enable to correlate its data with sugarcane biomass and N-uptake. Canopy reflectance sensor produced a better assessment of crop growth at the earlier growth stage whereas the ultrasonic sensor resulted in more accurate predictions at the later growing stages. It was proven that canopy height is season dependent whereas the reflectance data is growth stage dependent. The integration of both sensing systems improved the predictions of sugarcane biomass and N-uptake. It could be an alternative to guide local interventions by sugarcane industry during the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amaral, L. R., Molin, J. P., & Schepers, J. S. (2015a). Algorithm for variable-rate Nitrogen Application in Sugarcane based on active crop Canopy Sensor. Agronomy Journal, 107(4), 1513–1523. https://doi.org/10.2134/agronj14.0494.

    Article  CAS  Google Scholar 

  • Amaral, L. R., Molin, J. P., Portz, G., Finazzi, F. B., & Cortinove, L. (2015b). Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision Agriculture, 16, 15–28. https://doi.org/10.1007/s11119-014-9377-2.

    Article  Google Scholar 

  • Barmeier, G., Mistele, B., & Schmidhalter, U. (2016). Referencing laser and ultrasonic height measurements of barley cultivars by using a herbometre as standard. Crop and Pasture Science, 67(12), 1215–1222. https://doi.org/10.1071/CP16238.

    Article  Google Scholar 

  • Buelvas, R. M., Adamchuk, V. I., Leksono, E., Tikasz, P., Lefsrud, M., & Holoszkiewicz, J. (2019). Biomass estimation from canopy measurements for leafy vegetables based on ultrasonic and laser sensors. Computers and Electronics in Agriculture, 164, 104896. https://doi.org/10.1016/j.compag.2019.104896.

    Article  Google Scholar 

  • Canata, T. F., Wei, M. C. F., Maldaner, L. F., & Molin, J. P. (2021). Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sensing, 13(2), 232. https://doi.org/10.3390/rs13020232

    Article  Google Scholar 

  • Crevelari, J. A., Durães, N. N. L., Bendia, L. C. R., Vettorazzi, J. C. F., Entringer, G. C., Ferreira Júnior, J. A., & Pereira, M. G. (2018). Correlations between agronomic traits and path analysis for silage production in maize hybrids. Bragantia, 77(2), 243–252. https://doi.org/10.1590/1678-4499.2016512.

    Article  Google Scholar 

  • Cursi, D. E., Hoffmann, H. P., & Barbosa, G. V. S. (2022). History and current status of sugarcane breeding, germplasm development and molecular genetics in Brazil. Sugar Technology, 24, 112–133. https://doi.org/10.1007/s12355-021-00951-1

    Article  CAS  Google Scholar 

  • Freeman, K. W., Arnall, D. B., Mullen, R. W., Girma, K., Martin, K. L., Teal, R. K., & Raun, W. R. (2007). By-plant prediction of corn forage biomass and nitrogen uptake at various stages using remote sensing and plant height measures. Agronomy Journal, 99(2), 530–536. https://doi.org/10.2134/agronj2006.0135.

    Article  CAS  Google Scholar 

  • Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828–831. https://doi.org/10.1126/science.1183899.

    Article  CAS  PubMed  Google Scholar 

  • Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wavelength combination – impact of seed rate, variety and growth stage. In: Van Henten, E.J., Goense, D. and Lokhorst, C. (eds). In Proceedings of the 7th European Conference on Precision Agriculture (pp. 23–30)

  • Jones, J. R., Fleming, C. S., Pavuluri, K., Alley, M. M., Reiter, M. S., & Thomason, W. E. (2015). Influence of soil, crop residue, and sensor orientations on NDVI readings. Precision Agriculture, 16, 690–704. https://doi.org/10.1007/s11119-015-9402-0.

    Article  Google Scholar 

  • Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift Fur Analytische Chemie, 22, 366–382.

    Article  Google Scholar 

  • Molijn, R. A., Iannini, L., Rocha, J. V., & Hanssen, R. F. (2018). Detailed ground reference data for sugarcane biomass estimation in São Paulo state, Brazil. Scientific Data, 5, 1–18. https://doi.org/10.1038/sdata.2018.150.

    Article  Google Scholar 

  • Molijn, R. A., Iannini, L., Rocha, J. A., & Hanssen, R. F. (2019). Sugarcane Productivity Mapping through C-Band and L-Band SAR and Optical Satellite Imagery. Remote Sensing, 11(9), 1109. https://doi.org/10.3390/rs11091109.

    Article  Google Scholar 

  • Oliveira, J. B., Camargo, M. N., Rossi, M., & Calderano Filho, B. (1999). Mapa Pedológico do Estado de São Paulo. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Campinas: Instituto Agronômico; Rio de Janeiro: Embrapa Solos, 64p., 1999 (in Portuguese)

  • Pallottino, F., Antonucci, F., Costa, C., Bisaglia, C., Figorilli, S., & Menesatti, P. (2019). Optoelectronic proximal sensing vehicle-mounted technologies in precision agriculture: A review. Computers and Electronics in Agriculture, 162, 859–873. https://doi.org/10.1016/j.compag.2019.05.034.

    Article  Google Scholar 

  • Pittman, J. J., Arnall, D. B., Interrante, S. M., Moffet, C. A., & Butler, T. J. (2015). Estimation of biomass and canopy height in Bermudagrass, Alfalfa, and wheat using ultrasonic, laser, and spectral sensors. Sensors (Basel, Switzerland), 15(2), 2920–2943. https://doi.org/10.3390/s150202920

    Article  PubMed  Google Scholar 

  • Portz, G., Molin, J. P., & Jasper, J. (2012a). Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13, 33–44. https://doi.org/10.1007/s11119-011-9243-4.

    Article  Google Scholar 

  • Portz, G., Amaral, L. R., Molin, J. P., & Jasper, J. (2012b). Optimum sugarcane growth stage for canopy reflectance sensor to predict biomass and nitrogen uptake. In Proceedings of 10th International Conference on Precision Agriculture (ISPA) IN

  • Portz, G., Amaral, L. R., & Molin, J. P. (2012c). Measuring sugarcane height in complement to biomass sensor for nitrogen management. In Proceedings of 10th International Conference on Precision Agriculture (ISPA), IN

  • R Core Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

    Google Scholar 

  • Scotford, I. M., & Miller, P. C. H. (2003). Combination of spectral reflectance and ultrasonic sensing to monitor the growth of winter wheat. Biosystems Engineering, 87(1), 27–38. https://doi.org/10.1016/j.biosystemseng.2003.09.009. 60.

    Article  Google Scholar 

  • Scotford, I. M., & Miller, P. C. H. (2004). Estimating tiller density and leaf area index of winter wheat using spectral reflectance and ultrasonic sensing techniques. Biosystems Engineering, 89(4), 395–408. https://doi.org/10.1016/j.biosystemseng.2004.08.019.

    Article  Google Scholar 

  • Sharma, L. K., & Franzen, D. W. (2013). Use of corn height to improve the relationship between active optical sensor readings and yield estimates. Precision Agriculture, 15, 331–345. https://doi.org/10.1007/s11119-013-9330-9.

    Article  Google Scholar 

  • Shibayama, M., Akiyama, T., & Munakata, K. (1985). A portable field ultrasonic sensor for crop canopy characterization. Remote Sensing of Environment, 18(3), 269–279. https://doi.org/10.1016/0034-4257(85)90062-8.

    Article  Google Scholar 

  • Shiratsuchi, L. S., Ferguson, R. B., Adamchuk, V. I., Shanahan, J. F., & Slater, G. P. (2009). Integration of ultrasonic and active canopy sensors to estimate the in-season nitrogen content for corn. In Proceedings of the 39th North Central Extension-Industry Soil Fertility Conference, 2009,  International Plant Nutrition Institute

  • Shrestha, D. S., Steward, B. L., Birrell, S. J., & Kaspar, T. C. (2002). Corn plant height estimation using two sensing systems. ASAE Paper No. 021197. ASAE

  • Sudduth, K. A., Kitchen, N. R., & Drummond, S. T. (2010). Comparison of three canopy reflectance sensors for variable-rate nitrogen application in corn. In 10th International Conference on Precision Agriculture (ICPA). Denver

  • Sui, R., & Thomasson, J. A. (2006). Ground-based sensing system for cotton nitrogen status determination. Transactions of the ASABE, 49(6), 1983–1991. https://doi.org/10.13031/2013.22279.

    Article  Google Scholar 

  • Sui, R., Wilkerson, J. B., Wilhelm, L. R., & Tompkins, F. D. (1989). A microcomputer-based morphometer for bush-type plants. Computer and Electronics in Agriculture, 4(1), 43–58. https://doi.org/10.1016/0168-1699(89)90013-6.

    Article  Google Scholar 

  • Tilly, N., & Bareth, G. (2019). Estimating nitrogen from structural crop traits at field scale - a novel approach versus spectral vegetation indices. Remote Sensing, 11(17), 2066. https://doi.org/10.3390/rs11172066

    Article  Google Scholar 

  • Van Dillewiijn, C. (1952). Botany of sugarcane. Chronica Botanica.

  • Wang, X., Miao, Y., Dong, R., Chen, Z., Guan, Y., Yue, X., Fang, Z., & Mulla, D. J. (2019). Developing active canopy sensor-based precision nitrogen management strategies for maize in Northeast China. Sustainability, 11(3), 706. https://doi.org/10.3390/su11030706

    Article  Google Scholar 

  • Zhao, Z., Verburg, K., & Huth, N. (2017). Modelling sugarcane nitrogen uptake patterns to inform design of controlled release fertiliser for synchrony of N supply and demand. Field Crops Research, 213, 51–64. https://doi.org/10.1016/j.fcr.2017.08.001.

    Article  Google Scholar 

Download references

Acknowledgements

This work would not be possible without the collaboration of São Martinho’s Mill team, Máquinas Agrícolas Jacto and Yara International (Research Centre Hanninghof). We also acknowledge the Research and Projects Financing (FINEP) from the Ministry of Science and Technology through the PROSENSAP project for financial support and the National Council for Scientific and Technological Development (CNPq) for providing a doctoral scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Portz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portz, G., Molin, J.P., Canata, T.F. et al. Integration of ultrasonic and optical sensing systems to assess sugarcane biomass and N-uptake. Precision Agric 25, 83–99 (2024). https://doi.org/10.1007/s11119-023-10059-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10059-z

Keywords

Navigation