Skip to main content

Advertisement

Log in

Adoption of precision agriculture technologies by sugarcane farmers in the state of São Paulo, Brazil

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

This research aims at analyzing the determinants of the adoption and the intensity of adoption of precision agriculture technologies (PATs) by sugarcane farmers in the state of São Paulo, Brazil. A sample survey of 131 sugarcane farmers provided the data. Six adopted PATs were identified: GNSS and images for planting row orientation (52 adopters), tractor/harvester with automatic guidance system (32), georeferenced grids for soil sampling (15), images (satellite and/or drone) for mapping pests and yields (8), variable-rate applicators of fertilizers (8), and variable-rate applicators of pesticide (3). The adoption and adoption intensity (dependent variable) were measured as the number of PATs used by farmers. 53 farmers adopted at least one of these technologies, while 78 farmers did not adopt PATs. A count data model was used to test hypotheses on factors explaining both adoption and the intensity of adoption. The results suggested that the information provided by the sugarcane mills, the production scale and farmer perception that PATs would increase yield are determining factors for adoption. Information provided by private technical advisors and obtained at agricultural events plays an important role in the intensity of adoption. Such intensity is also affected by farmers’ previous experience with PATs, their perception that PATs would increase yield, and the availability of low-cost credit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: IBGE, 2017

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon request.

References

  • Allahyari, M. S., Mohammadzadeh, M., & Nastis, S. A. (2016). Agricultural experts’ attitude towards precision agriculture: Evidence from Guilan Agricultural Organization Northern Iran. Information Processing in Agriculture, 3(3), 183–189. https://doi.org/10.1016/j.inpa.2016.07.001

    Article  Google Scholar 

  • Amorim, F. R., Patino, M. T. O., Abreu, P. H. C., & Santos, D. F. L. (2019). Avaliação econômica e de risco dos sistemas de aplicação de fertilizantes na cultura de cana-de-açúcar: taxa fixa por média e taxa variável. Custos & Agronegócios on Line, 15(2), 140–166.

    Google Scholar 

  • Banco Nacional do Desenvolvimento – BNDES - Crédito Rural - Desempenho Operacional. Available at < https://www.bndes.gov.br/wps/portal/site/home/transparencia/consulta-operacoes-bndes/credito-rural-desempenho-operacional>.

  • Barnes, A. P., Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., Fountas, S., Van der Wal, T., & Gómez-Barbero, M. (2019). Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy, 80, 163–174. https://doi.org/10.1016/j.landusepol.2018.10.004

    Article  Google Scholar 

  • Batchelor, W. D., Basso, B., & Paz, J. O. (2002). Examples of strategies to analyze spatial and temporal yield variability using crop models. European Journal of Agronomy, 18, 141–158.

    Article  Google Scholar 

  • Bell, M., & Pavitt, K. (1993). Technological accumulation and industrial growth: Contrasts between developed and developing countries. Industrial and Corporate Change, 2(1), 157–210. https://doi.org/10.1093/icc/2.2.157

    Article  Google Scholar 

  • Bocquet, R., Brossard, O., & Sabatier, M. (2007). Complementarities in organizational design and the diffusion of information technologies: An empirical analysis. Research Policy, 36(3), 367–386. https://doi.org/10.1016/j.respol.2006.12.005

    Article  Google Scholar 

  • Bordonal, R. O., Carvalho, J. L. N., Lal, R., Figueiredo, E. B., Oliveira, B. G., & La Scala, N. (2018). Sustainability of sugarcane production in Brazil A review. Agronomy for Sustainable Development, 38(13), 1–23. https://doi.org/10.1007/s13593-018-0490-x

    Article  Google Scholar 

  • Buck, S., & Alwang, J. (2011). Agricultural extension; trust; and learning: results from economic experiments in Ecuador. Agricultural Economics, 42(6), 685–699. https://doi.org/10.1111/j.1574-0862.2011.00547.x

    Article  Google Scholar 

  • Camara, M. R. G., & Caldarelli, C. E. (2016). Expansão Canavieira e o uso da terra no Estado de São Paulo. Estudos Avançados, 30(88), 93–116.

    Article  Google Scholar 

  • Cameron, A. C., & Trivedi, P. K. (2013). Regression Analysis of Count Data. Econometric Society Monographs. Cambridge University Press.

    Google Scholar 

  • Carrer, M. J., Souza Filho, H. M., Vinholis, M. M. B., & Mozambani, C. I. (2022). Precision agriculture adoption and technical efficiency: An analysis of sugarcane farms in Brazil. Technological Forecasting and Social Change., 177, 121510.

    Article  Google Scholar 

  • Cohen, W., & Levinthal, D. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.

    Article  Google Scholar 

  • Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture, 4(2), 163–177. https://doi.org/10.1023/A:1024557205871

    Article  Google Scholar 

  • D’Antoni, J. M., Mishra, A. K., & Joo, H. (2012). Farmers’ perception of precision technology: The case of autosteer adoption by cotton farmers. Computers and Electronics in Agriculture, 87, 121–128. https://doi.org/10.1016/j.compag.2012.05.017

    Article  Google Scholar 

  • Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural innovations in developing countries: a survey. Economic Development & Cultural Change, 33(2), 255–298. https://doi.org/10.1086/451461

    Article  Google Scholar 

  • Finger, R., Swinton, S. M., El Benni, N., & Walter, A. (2019). Precision farming at the nexus of agricultural production and the environment. Annual Review of Resource Economics, 11(1), 313–335. https://doi.org/10.1146/annurev-resource-100518-093929

    Article  Google Scholar 

  • Gardezi, M., & Bronson, K. (2020). Examining the social and biophysical determinants of U.S. Midwestern corn farmers’ adoption of precision agriculture. Precision Agriculture, 21, 549–568. https://doi.org/10.1007/s11119-019-09681-7

    Article  Google Scholar 

  • Geroski, P. A. (2000). Models of technology diffusion. Research Policy, 29(4–5), 603–625. https://doi.org/10.1016/S0048-7333(99)00092-X

    Article  Google Scholar 

  • Giua, C., Materia, V. C., & Camanzi; L. (2022). Smart farming technologies adoption: Which factors play a role in the digital transition? Technology in Society, 68, 101869. https://doi.org/10.1016/j.techsoc.2022.101869

    Article  Google Scholar 

  • Grenne, W. H. (2003). Econometric analysis (5th ed.). Prentice Hall.

    Google Scholar 

  • Griliches, Z. (1957). Hybrid corn: An exploration in the Economics of technological change. Econometrica, 25, 501–522.

    Article  Google Scholar 

  • Groher, T., Heitkämper, K., Walter, A., Liebisch, F., & Umstätter; C. (2020). Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precision Agriculture, 21(6), 1327–1350. https://doi.org/10.1007/S11119-020-09723-5/TABLES/8

    Article  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística – IBGE – Censo Agropecuário de 2017. Available at <https://censos.ibge.gov.br/agro/2017/>.

  • International Society Of Precision Agriculture – ISPA (2021). Available at < https://www.ispag.org/>.

  • Isgin, T., Bilgic, A., Forster, D. L., & Batte, M. T. (2008). Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Computers and Electronics in Agriculture, 62(2), 231–242. https://doi.org/10.1016/j.compag.2008.01.004

    Article  Google Scholar 

  • Karatay, Y. N., & Meyer-Aurich, A. (2019). Profitability and downside risk implications of site-specific nitrogen management with respect to wheat grain quality. Precision Agriculture, 21, 449–472. https://doi.org/10.1007/s11119-019-09677-3

    Article  Google Scholar 

  • Kendall, H., Clark, B., Li, W., Jin, S., Jones, G. D., Chen, J., Taylor, J., Li, Z., & Frewer, L. J. (2022). Precision agriculture technology adoption: a qualitative study of small-scale commercial “family farms” located in the North China Plain. Precision Agriculture, 23(1), 319–351. https://doi.org/10.1007/S11119-021-09839-2/FIGURES/1

    Article  Google Scholar 

  • Khanal, A. R., Mishra, A. K., Lambert, D. M., & Paudel, K. P. (2019). Modeling post adoption decision in precision agriculture: A Bayesian approach. Computers and Electronics in Agriculture, 162(April), 466–474. https://doi.org/10.1016/j.compag.2019.04.025

    Article  Google Scholar 

  • Kolady, D. E., van der Sluis, E., Uddin, M. M., & Deutz, A. P. (2021). Determinants of adoption and adoption intensity of precision agriculture technologies: evidence from South Dakota. Precision Agriculture, 22(3), 689–710. https://doi.org/10.1007/S11119-020-09750-2/TABLES/10

    Article  Google Scholar 

  • Larson, J. A., Roberts, R. K., English, B. C., Larkin, S. L., Marra, M. C., Martin, S. W., Paxton, K. W., & Reeves, J. M. (2008). Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production. Precision Agriculture, 9(4), 195–208. https://doi.org/10.1007/s11119-008-9065-1

    Article  Google Scholar 

  • Milgron, P., & Roberts, J. (1990). The economics of modern manufacturing: technology; strategy; and organization. The American Economic Review, 80(3), 511–528.

    Google Scholar 

  • Miller, N. J., Griffin, T. W., Ciampitti, I. A., & Sharda, A. (2018). Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precision Agriculture, 20, 348–361. https://doi.org/10.1007/s11119-018-9611-4

    Article  Google Scholar 

  • Mizumoto; F. M. (2009). Strategy and entrepreneurial action in family business: the analysis of human capital and social capital (2009). 133 f. Tese (Doutorado) – Faculdade de Economia; Administração e Contabilidade; Universidade de São Paulo; São Paulo; 2009.

  • Molin, J. P., Portz, G., & Amaral, L. R. (2013). Precision agriculture in sugarcane production. In M. A. Oliver, T. Bishop, & B. Marchant (Eds.), Precision Agriculture for Sustainability and Environmental Protection. Routledge.

    Google Scholar 

  • Organização de Associações de Produtores de Cana do Brasil – ORPLANA. (2020). Perfil segmentado do produtor de cana: safra 2018/2019. Available at: <http://www.orplana.com.br/prog-segmenta>.

  • Paustian, M., & Theuvsen, L. (2016). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture, 18(5), 701–716. https://doi.org/10.1007/s11119-016-9482-5

    Article  Google Scholar 

  • Paxton, K. W., Mishra, A. K., Chintawar, S., Roberts, R. K., Larson, J. A., English, B. C., Lambert, D. M., Marra, M. C., Larkin, S. L., Reeves, J. M., & Martin, S. W. (2011). Intensity of precision agriculture technology adoption by cotton producers. Agricultural and Resource Economics Review, 40(1), 133–144. https://doi.org/10.1017/S1068280500004561

    Article  Google Scholar 

  • Sanches, G. M., Magalhães, P. S., Kolln, O. T., Otto, R., Rodrigues, F., Jr., Cardoso, T. F., & Franco, H. C. (2021). Agronomic, economic, and environmental assessment of site-specific fertilizer management of Brazilian sugarcane fields. Geoderma Regional, 24, e00360.

    Article  Google Scholar 

  • Shock, C. C., & Wang, F. (2011). Soil ater Tension; a Powerful Measurement fo747 Productivity and Stewardship. HortScience, 42(2), 178–185.

    Article  Google Scholar 

  • Sparovek, G., & Schnug, E. (2001). Soil tillage and precision agriculture: A theoretical case study for soil erosion control in Brazilian sugar cane production. Soil and Tillage Research, 61(1–2), 47–54.

    Article  Google Scholar 

  • Stafford, J., & v. (2000). Implementing Precision Agriculture in the 21st Century. Journal of Agricultural Engineering Research, 76, 267–275. https://doi.org/10.1006/jaer.2000.0577

    Article  Google Scholar 

  • Tamirat, T. W., Pedersen, S. M., & Lind, K. M. (2018). Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 68(4), 349–357. https://doi.org/10.1080/09064710.2017.1402949

    Article  Google Scholar 

  • Tey, Y. S., & Brindal, M. (2021). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713–730. https://doi.org/10.1007/s11119-012-9273-6

    Article  Google Scholar 

  • União da Indústria de Cana-de-Açúcar – ÚNICA (2020). Moagem de cana-deaçúcar e produção de açúcar e etanol - safra 2018/2019. Available at: <http://unicadata.com.br>.

  • Walton, J. C., Lambert, D. M., Roberts, R. K., Larson, J. A., English, B. C., Larkin, S. L., Martin, S. W., Marra, M. C., Paxton, K. W., & Reeves, J. M. (2008). Adoption and abandonment of precision soil sampling in cotton production. Journal of Agricultural and Resource Economics, 33(3), 428–448.

    Google Scholar 

  • Walton, J. C., Larson, J. A., Roberts, R. K., Lambert, D. M., English, B. C., Larkin, S. L., Marra, M. C., Martin, S. W., Paxton, K. W., & Reeves, J. M. (2010). Factors Influencing Farmer Adoption of Portable Computers for Site-Specific Management: A Case Study for Cotton Production. Journal of Agricultural and Applied Economics, 42(2), 193–209. https://doi.org/10.1017/s1074070800003400

    Article  Google Scholar 

  • Watcharaanantapong, P., Roberts, R. K., Lambert, D. M., Larson, J. A., Velandia, M., English, B. C., Rejesus, R. M., & Wang, C. (2014). Timing of precision agriculture technology adoption in US cotton production. Precision Agriculture, 15(4), 427–446.

    Article  Google Scholar 

  • Zahra, S. A., & George, G. (2002). Absorptive capacity: A review; reconceptualization; and extension. Academy of Management Review, 27(2), 185–203.

    Article  Google Scholar 

Download references

Acknowledgement

National Council for Scientific and Technological Development – CNPq, Brazil, supported this research [CNPq grants 423009/2018-4 and 303341/2019-0] and Brazilian Agricultural Research Corporation—Embrapa [40.19.03.060.00.00 and 41.14.09.001.06.00].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. CIM, MdMBV and MJC: The data collection and analysis were performed. CIM and HMdSF: The first draft of the manuscript was written, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Carlos Ivan Mozambani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables

Table 5 Sample counties

5,

Table 6 Poisson Model

6,

Table 7 correlation matrix variables

7,

Table 8 Pearson test goodness-of-fit poisson model

8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozambani, C.I., de Souza Filho, H.M., Vinholis, M.M.B. et al. Adoption of precision agriculture technologies by sugarcane farmers in the state of São Paulo, Brazil. Precision Agric 24, 1813–1835 (2023). https://doi.org/10.1007/s11119-023-10019-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10019-7

Keywords

Navigation