Skip to main content

Advertisement

Log in

Proxi-detection to monitor the growth status of wheat in the presence of weeds using low-cost and simple digital tools to track the emergence of stress

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

This study combines proximal sensing technology based on a mobile visible imaging device and a dynamic ecophysiological model to estimate the growth status of two winter wheat crops (Apache and Rubisko cultivars) in the presence of uncontrolled broadleaf weeds. Working at early growth stages and on four different dates, each plot was photographed and then destructive biomass samples were collected. After calibration, crop aboveground biomass is inferred from an image indicator, the fractional vegetation cover (FVC). A supervised image classification algorithm was used to calculate FVC for crop (FVCc) and for weeds (FVCw). Analysis of FVC measurements focused on stand heterogeneity by comparing their variability and the impact of weeds on crop growth. Over time, the discrepancy between plant biomass derived from the image and data simulated from a simple ecophysiological model increased for most areas of the plot, indicating the presence of crop stress. At the same time, the weed pressure (WP) study concluded that weeds did not have a major influence on crop growth, although locally some areas showed a negative impact on crop growth. Therefore, weeds were not the major stress observed on the later dates of the study. These low-cost technologies aim to determine stress in wheat crop and support farmers in their transition to agroecology for highly accurate plot monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aase, J. K. (1978). Relationship between leaf area and dry matter in winter wheat. Agronomy Journal, 70, 563–565.

    Article  Google Scholar 

  • Bah, M. D., Hafane, A., & Canals, R. (2018). Deep Learning with unsupervised data labelling for weeds detection on UAV images. Remote Sensing, 10(11), 1690. https://doi.org/10.3390/rs10111690

    Article  Google Scholar 

  • Barnard, H. R., Findley, M. C., & Csavina, J. (2014). A simple and inexpensive device for logging photosynthetically active radiation. Tree Physiology, 34, 640–645. https://doi.org/10.1093/treephys/tpu044

    Article  PubMed  Google Scholar 

  • Beillouin, D., Leclère, M., Barbu, C. M., Bénézit, M., Trépos, R., Gauffreteau, A., & Jeuffroy, M.-H. (2018). Azodyn-Barley, a winter-barley crop model for predicting and ranking genotypic yield, grain protein and grain size in contrasting pedoclimatic conditions. Agricultural and Forest Meteorology, 262, 237–248. https://doi.org/10.1016/j.agrformet.2018.06.002

    Article  Google Scholar 

  • Berge, T. W., Goldberg, S., Kaspersen, K., & Netland, J. (2012). Towards machine vision based site-specific weed management in cereals. Computers and Electronics in Agriculture, 81, 79–86. https://doi.org/10.1016/j.compag.2011.11.004

    Article  Google Scholar 

  • Boschert, S., & Rosen, R. (2016). Digital twin—The simulation aspect. In P. Hehenberger & D. Bradley (Eds.), Mechatronic futures: Challenges and solutions for mechatronic systems and their designers (pp. 59–74). Springer.

    Google Scholar 

  • Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., et al. (2003). An overview of the crop model STICS. European Journal of Agronomy, 18, 309–332. https://doi.org/10.1016/S1161-0301(02)00110-7

    Article  Google Scholar 

  • Calvert, B., Olsen, A., Whinney, J., & Azghadi, M. R. (2021). Robotic spot spraying of Harrisia Cactus (Harrisia martinii) in grazing pastures of the Australian Rangelands. Plants, 10(10), 2054. https://doi.org/10.3390/plants10102054

    Article  PubMed  PubMed Central  Google Scholar 

  • Casadesús, J., & Villegas, D. (2014). Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. Journal of Integrative Plant Biology, 56(1), 7–14. https://doi.org/10.1111/jipb.12117

    Article  PubMed  Google Scholar 

  • Caussanel, P. J. (1989). Nuisibilité et seuils de nuisibilité des mauvaises herbes dans une culture annuelle: Situation de concurrence bispécifique (Injurious effects of weeds and weed thresholds in an annual arable crop: Interference between two species). Agronomie, 9, 219–240. https://doi.org/10.1051/agro:19890301

    Article  Google Scholar 

  • Christensen, C., Søgaard, H. T., Kudsk, P., Nørremark, M., Lund, I., Nadimi, E. S., & Jørgensen, R. (2009). Site-specific weed control technologies. Weed Research, 49, 233–241. https://doi.org/10.1111/j.1365-3180.2009.00696.x

    Article  Google Scholar 

  • Coffin, A., Bonnefoy-Claudet, C., Chassaigne, M., Jansen, A., & Gée, C. (2021). PARADe: A low-cost open-source device for photosynthetically active radiation (PAR) measurements. Smart Agricultural Technology. https://doi.org/10.1016/j.atech.2021.100018

    Article  Google Scholar 

  • Colbach, N., & Cordeau, S. (2018). Reduced herbicide use does not increase crop yield loss if it is compensated by alternative preventive and curative measures. European Journal of Agronomy, 94, 67–78. https://doi.org/10.1016/j.eja.2017.12.008

    Article  Google Scholar 

  • Corre-Hellou, G., Faure, M., Launay, M., Brisson, N., & Crozat, Y. (2009). Adaptation of the STICS intercrop model to simulate crop growth and N accumulation in pea–barley intercrops. Field Crops Research, 113, 72–81. https://doi.org/10.1016/j.fcr.2009.04.007

    Article  Google Scholar 

  • Duru, M., Therond, O., & Fares, M. (2015). Designing agroecological transitions. A review. Agronomy for Sustainable Development, 35(4), 1237–1257. https://doi.org/10.1007/s13593-015-0318-x

    Article  Google Scholar 

  • Foley, J. A. (2011). Can we feed the world and sustain the planet? Scientific American, 305, 60–65.

    Article  PubMed  Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. https://doi.org/10.1038/nature10452

    Article  PubMed  CAS  Google Scholar 

  • Gée, C., & Denimal, E. (2020). Two new non-destructive image-derived indicators for spatial assessment of the impact of broadleaf weeds on wheat biomass. Remote Sensing, 12(18), 2982. https://doi.org/10.3390/rs12182982

    Article  Google Scholar 

  • Gée, C., Denimal, E., Merienne, J., & Larmure, A. (2021). Evaluation of weed impact on wheat biomass by combining visible imagery with a plant growth model: Towards new non-destructive indicators for weed competition. Precision Agriculture Journal, 22(2), 550–568. https://doi.org/10.1007/s11119-020-09776-6

    Article  Google Scholar 

  • Gée, C., Mignon, V., Dujourdy, L., & Denimal, E. (2021a). Chapter 26. High throughput field phenotyping (HTFP) of wheat and weed cover in field experiments using RGB images: assessment of crop-weed competition with a simple ecophysiological model. In Proceedings of 12th European conference on precision agriculture (pp. 225–232). Wageningen Academic Publishers.

  • Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behaviour in complex systems. In F.-J. Kahlen, S. Flumerfelt, & A. Alves (Eds.), Transdisciplinary perspectives on complex systems. Springer.

    Google Scholar 

  • Jeuffroy, M. H., & Recous, S. (1999). Azodyn: A simple model simulating the date of nitrogen deficiency for decision support in wheat fertilization. European Journal of Agronomy, 10, 129–144. https://doi.org/10.1016/S1161-0301(98)00059-8

    Article  Google Scholar 

  • Jeuffroy, M. H., Valantin-Morison, M., Champolivier, L., & Reau, R. (2006). Azote, rendement et qualité des graines: Mise au point et utilisation du modèle Azodyn-colza pour améliorer les performances du colza vis-à-vis de l’azote (Nitrogen, yield and seed quality: Design and uses of the Azodyn-rape model to improve rape performances for nitrogen). Oilseeds and Fats, Crops and Lipids, 13(6), 388–392. https://doi.org/10.1051/ocl.2006.0090

    Article  Google Scholar 

  • Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9

    Article  Google Scholar 

  • Kruepl, C., Hoad, S., Davies, K., Bertholdsson, N.-O, & Paolini, R. (2006). Weed competitiveness. Handbook cereal variety testing for organic and low input agriculture.

  • Liu, H. Q., & Huete, A. R. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457–465. https://doi.org/10.1109/36.377946

    Article  Google Scholar 

  • Louargant, M., Jones, G., Faroux, R., Paoli, J. N., Maillot, T., Gée, C., & Villette, S. (2018). Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral information. Remote Sensing, 10(5), 761. https://doi.org/10.3390/rs10050761

    Article  Google Scholar 

  • Lu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T. (2019). Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 15(1), 17. https://doi.org/10.1186/s13007-019-0402

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamine, F., & Farès, M. (2020). Barriers and levers to developing wheat–pea intercropping in Europe: A review. Sustainability, 12(17), 696. https://doi.org/10.3390/su12176962

    Article  CAS  Google Scholar 

  • Martinez-Guanter, J., Egea, G., Perez-Ruiz, M., & Apolo-Apolo, O. E. (2019). Estimation of the leaf area index in maize based on UAV imagery using deep learning techniques. In J. V. Stafford (Ed.), Proceedings of 12th European conference on precision agriculture (pp. 389–393). Wageningen Academic Publishers.

    Google Scholar 

  • Mézière, D., Petit, S., Granger, S., Biju-Duval, L., & Colbach, N. (2015). Developing a set of simulation based indicators to assess harmfulness and contribution to biodiversity of weed communities in cropping systems. Ecological Indicators, 48, 157–170. https://doi.org/10.1016/j.ecolind.2014.07.028

    Article  Google Scholar 

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747–766. https://doi.org/10.2307/2401901

    Article  Google Scholar 

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 281, 277–294. https://doi.org/10.1098/rstb.1977.0140

    Article  Google Scholar 

  • Oerke, E. C., & Dehne, H. W. (2004). Safeguarding production—Losses in major crops and the role of crop protection. Crop Protection, 23, 275–285. https://doi.org/10.1016/j.cropro.2003.10.001

    Article  Google Scholar 

  • Paruelo, J. M., Lauenroth, W. K., & Roset, P. A. (2000). Technical note: Estimating aboveground plant biomass using a photographic technique. Journal of Range Management, 53, 190–193. https://doi.org/10.2307/4003281

    Article  Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. R foundation for Statistical Computing. Retrieved Oct 2022 from https://www.Rproject.org

  • Roujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375–384. https://doi.org/10.1016/0034-4257(94)00114-3

    Article  Google Scholar 

  • Rouse, J. W., Hass, R. H., Shell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. In Proceedings 3rd earth resources technology satellite symposium; Washington, DC, 10–14 December (pp. 309–317). NASA

  • RStudio Team. (2020). RStudio: Integrated development environment for R. RStudio Inc.

    Google Scholar 

  • Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch, F., et al. (2018). WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sensing, 10(9), 1423. https://doi.org/10.3390/rs10091423

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed.). W.H. Freeman and Co.

    Google Scholar 

  • Suh, H. K., Hofstee, J. W., Ijsselmuiden, J., & van Henten, E. J. (2018). Sugar beet and volunteer potato classification using Bag-of-Visual-Words model. Scale-invariant feature transform or speeded up robust feature descriptors and crop row information. Biosystems Engineering, 166, 210–226. https://doi.org/10.1016/j.biosystemseng.2017.11.015

    Article  Google Scholar 

  • Thébault, A., Pierron, S., & Achard, A. (2019). Discrimination automatique des espèces par imagerie en intelligence artificielle. Application au cas de l'ambroisie à feuilles d'armoise. Automatic discrimination of species by images and artificial intelligence. Application to common ragweed. In Proceedings of 24e conférence du COLUMA—Journées internationales sur la lutte contre les mauvaises herbes. AFPP Press.

  • Van Evert, F. K., Fountas, S., Jakovetic, D., Crnojevic, V., Travlos, I., & Kempenaar, C. (2017). Big data for weed control and crop protection. Weed Research, 57(4), 218–233. https://doi.org/10.1111/wre.12255

    Article  Google Scholar 

  • Verdouw, C., Tekinerdogan, B. R., Beulens, A., & Wolfert, S. (2021). Digital twins in smart farming. Agricultural Systems, 189, 103046. https://doi.org/10.1016/j.agsy.2020.103046

    Article  Google Scholar 

  • Vescovo, L., Wohlfahrt, G., Balzaro, M., Pilloni, S., Sottocornola, M., Rodeghiero, M., & Gianelle, D. (2012). New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass. International Journal of Remote Sensing, 33(7), 2178–2195. https://doi.org/10.1080/01431161.2011.607195

    Article  Google Scholar 

  • Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402

    Article  Google Scholar 

  • Wenzhu, Y., Sile, W., Xiaolan, Z., Jingsi, Z., & Jiaqi, F. (2015). Greenness identification based on HSV decision tree. Information Processing in Agriculture, 2(3–4), 149–160. https://doi.org/10.1016/j.inpa.2015.07.003

  • Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34, 1–20. https://doi.org/10.1007/s13593-013-0180-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Vincent Durey and Annick Matéjicek who were involved in this project, one on PAR sensor control and the other for plant identification. Thanks to Arnaud Coffin for his mastery of the R software and the realization of some figures of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Gée.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Figs. 9 and 10.

Fig. 9
figure 9

Example of FVCc and FVCw digital maps for Apache cultivar for the four dates. Red color is associated with low values of FVCc (wheat) and, conversely, with high values of FVCw (weeds) (Color figure online)

Fig. 10
figure 10

Temporal evolution of weed pressure (WP, %) for Apache and Rubisko cultivars (Color figure online)

Appendix 2

See Table 3.

Table 3 Summary of variance comparison tests of Apache and Rubisko stands

Appendix 3

See Tables 4 and 5.

Table 4 Summary table of means and standard deviations for wheat (FVCc) and weeds (FVCw) in the initial dataset
Table 5 Summary table of means and standard deviations for wheat (FVCc) and weeds (FVCw) in the reduced dataset

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gée, C., Dujourdy, L., Mignon, V. et al. Proxi-detection to monitor the growth status of wheat in the presence of weeds using low-cost and simple digital tools to track the emergence of stress. Precision Agric 23, 2115–2134 (2022). https://doi.org/10.1007/s11119-022-09963-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09963-7

Keywords

Navigation