Skip to main content

Advertisement

Log in

A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Acquiring the crop plant count is critical for enhancing field decision-making at the seedling stage. Remote sensing using unmanned aerial vehicles (UAVs) provide an accurate and efficient way to estimate plant count. However, there is a lack of a fast and robust method for counting plants in crops with equal spacing and overlapping. Moreover, previous studies only focused on the plant count of a single crop type. Therefore, this study developed a method to fast and non-destructively count plant numbers using high-resolution UAV images. A computer vision-based peak detection algorithm was applied to locate the crop rows and plant seedlings. To test the method’s robustness, it was used to estimate the plant count of two different crop types (maize and sunflower), in three different regions, at two different growth stages, and on images with various resolutions. Maize and sunflower were chosen to represent equidistant crops with distinct leaf shapes and morphological characteristics. For the maize dataset (with different regions and growth stages), the proposed method attained R2 of 0.76 and relative root mean square error (RRMSE) of 4.44%. For the sunflower dataset, the method resulted in R2 and RRMSE of 0.89 and 4.29%, respectively. These results showed that the proposed method outperformed the watershed method (maize: R2 of 0.48, sunflower: R2 of 0.82) and better estimated the plant numbers of high-overlap plants at the seedling stage. Meanwhile, the method achieved higher accuracy than watershed method during the seedling stage (2–4 leaves) of maize in both study sites, with R2 up to 0.78 and 0.91, respectively, and RRMSE of 2.69% and 4.17%, respectively. The RMSE of plant count increased significantly when the image resolution was lower than 1.16 cm and 3.84 cm for maize and sunflower, respectively. Overall, the proposed method can accurately count the plant numbers for in-field crops based on UAV remote sensing images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Argüello Prada, E. J., Bravo Gallego, C. A., & Castillo García, J. F. (2021). On the development of an efficient, low-complexity and highly reproducible method for systolic peak detection. Biomedical Signal Processing and Control, 68, 102606. https://doi.org/10.1016/j.bspc.2021.102606

    Article  Google Scholar 

  • Bai, J., Jing, L., & Li, S. (2010). Monitoring the plant density of cotton with remotely sensed data. In Computer & Computing Technologies in Agriculture Iv-ifip Tc 12 Conference.

  • Belaid, L. J., & Mourou, W. (2009). Image segmentation: A watershed transformation algorithm. Image Analysis & Stereology, 28(2), 93–102.

    Article  Google Scholar 

  • Csillik, O., Cherbini, J., Johnson, R., Lyons, A., & Kelly, M. (2018). Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones, 2(4), 39.

    Article  Google Scholar 

  • Du, S.-Z., & Tu, C.-L. (2016). An autonomous vehicle navigation system based on hough transform and fuzzy logic. In Electronics, Communications and Networks V (pp. 89–95). Springer.

  • García-Martínez, H., Flores-Magdaleno, H., Khalil-Gardezi, A., Ascencio-Hernández, R., Tijerina-Chávez, L., Vázquez-Peña, M. A., & Mancilla-Villa, O. R. (2020). Digital count of corn plants using images taken by unmanned aerial vehicles and cross correlation of templates. Agronomy, 10(4), 469.

    Article  Google Scholar 

  • Gnadinger, F., & Schmidhalter, U. (2017). Digital counts of maize plants by Unmanned Aerial Vehicles (UAVs). Remote Sensing, 9(6), 544. https://doi.org/10.3390/rs9060544

    Article  Google Scholar 

  • Goldman, E., Herzig, R., Eisenschtat, A., Goldberger, J., & Hassner, T. (2019). Precise detection in densely packed scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

  • Hough, P. V. (1962). Method and means for recognizing complex patterns. US patent, 3(6).

  • Huete, A., Justice, C., & Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49(3), 224–234.

    Article  Google Scholar 

  • Jamal, N., Ibrahim, N., & Sha’abani, M., Mahmud, F., & Fuad, N. (2021). Automated heart sound signal segmentation and identification using Abrupt Changes and Peak Finding Detection. Procedia Computer Science, 179, 260–267. https://doi.org/10.1016/j.procs.2021.01.005

    Article  Google Scholar 

  • Jiang, Y., Li, C., Paterson, A. H., & Robertson, J. S. (2019). DeepSeedling: Deep convolutional network and Kalman filter for plant seedling detection and counting in the field. Plant Methods, 15, 141. https://doi.org/10.1186/s13007-019-0528-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, X., Liu, S., Baret, F., Hemerlé, M., & Comar, A. (2017). Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sensing of Environment, 198, 105–114. https://doi.org/10.1016/j.rse.2017.06.007

    Article  Google Scholar 

  • Jin, X., Zarco-Tejada, P., Schmidhalter, U., Reynolds, M. P., Hawkesford, M. J., Varshney, R. K., & Ming, B. (2020). High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, 1–33.

  • Khaki, S., Pham, H., Han, Y., Kent, W., & Wang, L. (2020). High-throughput image-based plant stand count estimation using convolutional neural networks. arXiv preprint arXiv:2010.12552.

  • Kitano, B., Mendes, C., Geus, A., Oliveira, H., & Souza, J. (2019). Corn plant counting using deep learning and UAV images. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2019.2930549

    Article  Google Scholar 

  • Koen, B. V. (1988). Toward a definition of the engineering method. European Journal of Engineering Education, 13(3), 307–315.

    Article  Google Scholar 

  • Koh, J. C. O., Hayden, M., Daetwyler, H., & Kant, S. (2019). Estimation of crop plant density at early mixed growth stages using UAV imagery. Plant Methods, 15, 64. https://doi.org/10.1186/s13007-019-0449-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leavers, V. (1993). Which hough transform? CVGIP: Image Understanding, 58(2), 250–264.

    Article  Google Scholar 

  • Li, B., Xu, X., Han, J., Zhang, L., Bian, C., Jin, L., & Liu, J. (2019). The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods, 15, 15. https://doi.org/10.1186/s13007-019-0399-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Baret, F., Allard, D., Jin, X., Andrieu, B., Burger, P., & Comar, A. (2017a). A method to estimate plant density and plant spacing heterogeneity: Application to wheat crops. Plant Methods, 13, 38. https://doi.org/10.1186/s13007-017-0187-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Baret, F., Andrieu, B., Burger, P., & Hemmerlé, M. (2017b). Estimation of wheat plant density at early stages using high resolution imagery. Frontiers in Plant Science, 8, 739.

    Article  Google Scholar 

  • Liu, T., Li, R., Jin, X. L., Ding, J. F., Zhu, X. K., Sun, C. M., & Guo, W. S. (2017c). Evaluation of seed emergence uniformity of mechanically sown wheat with UAV RGB imagery. Remote Sensing, 9(12), 1241. https://doi.org/10.3390/rs9121241

    Article  Google Scholar 

  • Liu, T., Wu, W., Chen, W., Sun, C., Zhu, X., & Guo, W. (2015). Automated image-processing for counting seedlings in a wheat field. Precision Agriculture, 17(4), 392–406. https://doi.org/10.1007/s11119-015-9425-6

    Article  Google Scholar 

  • Liu, T., Yang, T., Li, C., Li, R., Wu, W., Zhong, X., & Guo, W. (2018). A method to calculate the number of wheat seedlings in the 1st to the 3rd leaf growth stages. Plant Methods, 14, 101. https://doi.org/10.1186/s13007-018-0369-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas Prado, O., Mauro, Diogo Nunes, G., Alexandre, D., Juliana, B., Mauricio, & Wesley Nunes, G. (2021). A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 1–17https://doi.org/10.1016/j.isprsjprs.2021.01.024.

  • Machefer, M. (2020). Mask R-CNN refitting strategy for plant counting and sizing in UAV imagery. Remote Sensing, 12, 3015. https://doi.org/10.3390/rs12183015

    Article  Google Scholar 

  • Maertens, K., Reyns, P., De Clippel, J., & De Baerdemaeker, J. (2003). First experiments on ultrasonic crop density measurement. Journal of Sound and Vibration, 266(3), 655–665. https://doi.org/10.1016/s0022-460x(03)00591-1

    Article  Google Scholar 

  • Mavridou, E., Vrochidou, E., Papakostas, G. A., Pachidis, T., & Kaburlasos, V. G. (2019). Machine vision systems in precision agriculture for crop farming. Journal of Imaging, 5(12), 89.

    Article  Google Scholar 

  • Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63(2), 282–293.

    Article  Google Scholar 

  • O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., & Walsh, J. (2019). Deep learning vs. traditional computer vision. In: Science and Information Conference.

  • Osco, L. P., de Arruda, M. D. S., Junior, J. M., da Silva, N. B., Ramos, A. P. M., Moryia, É. A. S., & Matsubara, E. T. (2020). A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 97–106.

    Article  Google Scholar 

  • Parvati, K., Rao, P., & Mariya Das, M. (2008). Image segmentation using gray-scale morphology and marker-controlled watershed transformation. Discrete Dynamics in Nature and Society, 2008.

  • Said, K. A. M., Jambek, A. B., & Sulaiman, N. (2016). A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications, 9(31), 15–21.

    Google Scholar 

  • Sezan, M. I. (1990). A peak detection algorithm and its application to histogram-based image data reduction. Computer Vision, Graphics, and Image Processing, 49(1), 36–51.

    Article  Google Scholar 

  • Shi, Y., Wang, N., Taylor, R. K., & Raun, W. R. (2015). Improvement of a ground-LiDAR-based corn plant population and spacing measurement system. Computers and Electronics in Agriculture, 112, 92–101. https://doi.org/10.1016/j.compag.2014.11.026

    Article  Google Scholar 

  • Shirzadifar, A., Maharlooei, M., Bajwa, S. G., Oduor, P. G., & Nowatzki, J. F. (2020). Mapping crop stand count and planting uniformity using high resolution imagery in a maize crop. Biosystems Engineering, 200, 377–390. https://doi.org/10.1016/j.biosystemseng.2020.10.013

    Article  Google Scholar 

  • Shrestha, D., Steward, B. L., & Birrell, S. J. (2004). Video processing for early stage maize plant detection. Biosystems Engineering, 89(2), 119–129.

    Article  Google Scholar 

  • Shuai, G., Martinez-Feria, R. A., Zhang, J., Li, S., Price, R., & Basso, B. (2019). Capturing maize stand heterogeneity across yield-stability zones using Unmanned Aerial Vehicles (UAV). Sensors, 19(20), 4446.

    Article  Google Scholar 

  • Shuai, G., Martinezferia, R. A., Zhang, J., Li, S., Price, R., & Basso, B. (2019). Capturing maize stand heterogeneity across yield-stability zones using Unmanned Aerial Vehicles (UAV). Sensors, 19(20), 4446.

    Article  Google Scholar 

  • Song, Z., Zhang, Z., Yang, S., Ding, D., & Ning, J. (2020). Identifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imaging. Computers and Electronics in Agriculture, 179, 105812.

    Article  Google Scholar 

  • Sun, C., Bian, Y., Zhou, T., & Pan, J. (2019). Using of Multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors, 19(10), 2401. https://doi.org/10.3390/s19102401

    Article  PubMed Central  Google Scholar 

  • TeKrony, D. M., & Egli, D. B. (1991). Relationship of seed vigor to crop yield: A review. Crop Science, 31(3), 816–822.

    Article  Google Scholar 

  • Varela, S., Dhodda, P. R., Hsu, W. H., Prasad, P. V. V., Assefa, Y., Peralta, N. R., & Ciampitti, I. A. (2018). Early-Season Stand Count determination in corn via integration of imagery from Unmanned Aerial Systems (UAS) and supervised learning techniques. Remote Sensing, 10(2), 343.

    Article  Google Scholar 

  • Wang, N., Zhu, X., & Zhang, J. (2016). License plate segmentation and recognition of Chinese vehicle based on BPNN. In: 2016 12th International Conference on Computational Intelligence and Security (CIS).

  • Wu, W., Liu, T., Zhou, P., Yang, T., Li, C., Zhong, X., & Guo, W. (2019). Image analysis-based recognition and quantification of grain number per panicle in rice. Plant Methods, 15, 122. https://doi.org/10.1186/s13007-019-0510-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, K., Togami, T., & Yamaguchi, N. (2017). Super-resolution of plant disease images for the acceleration of image-based phenotyping and vigor diagnosis in agriculture. Sensors, 17(11), 2557.

    Article  Google Scholar 

  • Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., & Yang, H. (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers in Plant Science, 8, 1111. https://doi.org/10.3389/fpls.2017.01111

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Wang, H., Che, H. Z., Tan, S. C., Shi, G. Y., & Yao, X. P. (2020). The impact of aerosol on MODIS cloud detection and property retrieval in seriously polluted East China. Science of the Total Environment, 711, 134634. https://doi.org/10.1016/j.scitotenv.2019.134634

    Article  CAS  PubMed  Google Scholar 

  • Zhao, B., Zhang, J., Yang, C., Zhou, G., Ding, Y., Shi, Y., & Liao, Q. (2018). Rapeseed seedling stand counting and seeding performance evaluation at two early growth stages based on unmanned aerial vehicle imagery [Original Research]. Frontiers in Plant Science, 9, 1362. https://doi.org/10.3389/fpls.2018.01362

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

  • Zhou, C., Yang, G., Liang, D., Yang, X., & Xu, B. (2018). An integrated skeleton extraction and pruning method for spatial recognition of maize seedlings in MGV and UAV remote images. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4618–4632.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Key Research and Development Program of China (grant 2021YFD1201602), National Natural Science Foundation of China (Grant No. 42071426, 51922072, 51779161, 51009101), and Central Public‐interest Scientific Institution Basal Research Fund for Chinese Academy of Agricultural Sciences (Grant Nos. Y2020YJ07), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences, Hainan Yazhou Bay Seed Lab (B21HJ0221), and Special Fund for Independent Innovation of Agricultural Science and Technology in Jiangsu, China(CX(21)3065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuliang Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Tables 8 and 9.

Table 8 The nitrogen application methods in the Xinxiang site
Table 9 The maize verities planted in the Xinxiang and Gongzhuling sites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Nie, C., Wang, H. et al. A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery. Precision Agric 23, 1720–1742 (2022). https://doi.org/10.1007/s11119-022-09907-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09907-1

Keywords

Navigation