Skip to main content
Log in

Using data on soil ECa, soil water properties, and response of tree root system for spatial water balancing in an apple orchard

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The study aims at spatial analysis of water deficit of fruit trees under semi-humid climate conditions. Differences of soil, root, and their relation with the spatial variability of crop evapotranspiration (ETa) were analyzed. Measurements took place in a six hectare apple orchard (Malus x domestica ‘Gala’) located in fruit production area of Brandenburg (latitude: 52.606°N, longitude: 13.817°E). Data of apparent soil electrical conductivity (ECa) in 25 cm were used for guided sampling of soil texture, bulk density, rooting depth, root water potential, and volumetric water content. Soil ECa showed high correlation with root depth. The readily available soil water content (RAW) was calculated considering three cases utilizing (i) uniform root depth of 1 m, (ii) measured values of root depth, and (iii) root water potential measured during full bloom, fruit cell division stage, at harvest. The RAW set the thresholds for irrigation. The ETa was calculated based on data from a weather station in the field and RAW cases in high, medium and low ECa conditions. ETa values obtained were utilized to quantify how fruit trees cope with spatial soil variability. The RAW-based irrigation thresholds for locations of low and high ECa value differed. The implementation of plant parameters (rooting depth, root water potential) in the water balance provided a more representative figure of water needs of fruit trees Consequently, the precise adjustment of irrigation including plant data can optimize the water use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

De :

Daily cumulative depth of water depleted from the surface (mm)

Dr, i :

Water depletion in the root zone at the end of day i (mm)

DPi :

Water loss out of the root zone by deep percolation on day i (mm)

DPe,i :

Water loss from the top soil by deep percolation at the end of day i (mm)

es :

Saturation vapour pressure (kPa)

ea :

Actual vapour pressure (kPa)

Ei :

Evaporation at the and of day i (mm)

ECa:

Apparent soil electrical conductivity (mS/m)

ET0 :

Reference evapotranspiration (mm)

ETa :

Actual crop evapotranspiration (mm)

ETa,RF :

Actual crop evapotranspiration adjusted to soil texture and plant height considering mean root depth of 1 m

ETa,RD :

Actual crop evapotranspiration adjusted to soil texture and plant height considering variable root depth (mm)

ETa,Ψ :

Crop evapotranspiration adjusted to soil texture and plant height considering variable root depth and root water potential (mm)

few,i :

The daily exposed and wetted soil fraction (Allen et al. 1998)

fW :

The fraction of wetted soil surface (Allen et al. 1998)

h:

Mean tree height (m)

I:

Irrigation (mm)

G:

Soil heat flux (MJ/m2 days)

Kcb :

Basal crop coefficient

Kcb,ini :

Initial basal crop coefficient during bud break and end full bloom, adjusted to field conditions

Kcb,mid :

Basal crop coefficient during full bloom and beginning of harvest, adjusted to field conditions

Kcb,end :

Basal crop coefficient during harvest till defoliation, adjusted to field conditions

Kcb,max :

Maximum value of basal crop coefficient during the cultivation period, adjusted to field conditions

Kc,ini (tab) :

Initial crop coefficient according to Table 12 (Allen et al. 1998)

Kc,mid (tab) :

Midterm crop coefficient according to Table 12 (Allen et al. 1998)

Kc,end(tab) :

Crop coefficient after harvest according to Table 12 (Allen et al. 1998)

Ke,RF,RD :

Soil surface evaporation coefficient

Ke,Ψ :

Soil surface evaporation coefficient based on measured values

Kr, RF,RD :

Soil evaporation reduction coefficient (Allen et al. 1998)

Kr,Ψ :

Soil evaporation reduction coefficient based on measured values

Ks,RF :

Soil water stress coefficient adjusted to soil textureKs,RDSoil water stress coefficient adjusted to soil texture and variable root depth

Ks,Ψ :

Soil water stress coefficient adjusted to soil texture, variable root depth and midday root water potential (mm)

p:

The average fraction of TAW that can be depleted from the root zone before the revealing of moisture stress (mm)

ptab :

Tabulated p values (Allen et al. 1998)

P:

Precipitation (mm)

RAWRF :

Readily available water content in the root zone adjusted to soil texture and tree height (mm)

RAWRD :

Readily available water content in the root zone adjusted to soil texture, tree height, and variable root depth measured (mm)

RAWΨ :

Readily available water content in the root zone adjusted to soil texture, variable root depth, and root water potential measured midday (mm)

RAWlow :

Readily available water content in the root zone in low ECa regions (mm)

RAWmid :

Readily available water content in the root zone in depth in mid ECa regions (mm)

RAWhigh :

Readily available water content in the root zone in high ECa regions (mm)

REW:

Cumulative depth of evaporation (mm)

RH:

Mean daily relative humidity (%)

Rn :

Solar radiation (W m−2)

ROi :

Run off at the end of day i (mm)

S:

Slope of the saturation vapour pressure (kPa/°C)

Tm :

Mean temperature (°C)

Tmax :

Max temperature (°C)

Tmin :

Min temperature (°C)

TAWRF :

Total available water in the root zone (mm) adjusted to soil texture

TAWRD :

Total available water in the root zone (mm) adjusted to soil texture and variable root depth measured

TAWΨ :

Total available water in the root zone (mm) adjusted to soil texture, variable root depth, and root water potential measured midday

TEWRF,RD :

Maximum evaporable water defined according the soil texture analyses

TEWΨ :

The maximum evaporable water, which defined according the soil texture analyses and the midday root water potential as wilting point

u:

Wind speed (m s−1)

WB:

Water balance model (mm)

WBRF :

Water balance model (mm) soil-adjusted

WBRD :

Water balance model (mm) adjusted to soil and rooting depth

WBΨ :

Water balance model (mm) adjusted to soil, rooting depth and midday root water potential

WP:

Wilting point, index 0 ranging from − 1.50 to − 1.01 MPa, while Ψ refers to root water potential measured midday

Ze :

Effective depth of soil evaporation layer (m)

ZR :

Root depth measured (m)

Z0 :

Uniform root depth of 1 m (Allen et al. 1998) for apple trees

γ:

Psychrometric coefficient (kPa/°C)

ρ:

Apparent soil resistivity (Ω m)

ΘFC :

Volumetric soil water content at field capacity (FC) (m3 m−3)

ΘWP :

Volumetric soil water content at WP0 (m3 m−3)

Θψ :

Volumetric soil water content at wilting point (m3 m−3) according to root water potential measured midday

References

  • Aggelopooulou, K., Castrignanò, A., Gemtos, T., & De Benedetto, D. (2013). Delineation of management zones in an apple orchard in Greece using a multivariate approach. Computers and Electronics in Agriculture,90, 119–130. https://doi.org/10.1016/j.compag.2012.09.009.

    Article  Google Scholar 

  • Alexandridis, T. K., Panagopoulos, A., Galanis, G., Alexiou, I., Cherif, I., Chemin, Y., … Zalidis, G. C. (2014). Combining remotely sensed surface energy fluxes and GIS analysis of groundwater parameters for irrigation system assessment. Irrigation Science, 32(2), 127–140. https://doi.org/10.1007/s00271-013-0419-8.

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56. FAO, Rome, 300(9), D05109.

  • Allen, R. G., Pereira, L. S., Smith, M., Raes, D., & Wright, J. L. (2005). FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. Journal of Irrigation and Drainage Engineering,131(1), 2–13. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2).

    Article  Google Scholar 

  • Auernhammer, H. (2001). Precision farming—the environmental challenge. Computers and Electronics in Agriculture,30(1–3), 31–43. https://doi.org/10.1016/S0168-1699(00)00153-8.

    Article  Google Scholar 

  • Blackmore, S., Godwin, R. J., & Fountas, S. (2003). The analysis of spatial and temporal trends in yield map data over six years. Biosystems Engineering,84(4), 455–466. https://doi.org/10.1016/S1537-5110(03)00038-2.

    Article  Google Scholar 

  • Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell and Environment,40(1), 4–10. https://doi.org/10.1111/pce.12800.

    Article  CAS  PubMed  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal,58, 1501–1511.

    Article  Google Scholar 

  • Campos, I., González-Piqueras, J., Carrara, A., Villodre, J., & Calera, A. (2016). Estimation of total available water in the soil layer by integrating actual evapotranspiration data in a remote sensing-driven soil water balance. Journal of Hydrology,534, 427–439. https://doi.org/10.1016/j.jhydrol.2016.01.023.

    Article  Google Scholar 

  • Carsel, R. F., & Parrish, R. S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research,24(5), 755–769. https://doi.org/10.1029/WR024i005p00755.

    Article  Google Scholar 

  • Chilundo, M., Joel, A., Wesström, I., Brito, R., & Messing, I. (2017). Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil. Field Crops Research,200, 143–162. https://doi.org/10.1016/j.fcr.2016.10.005.

    Article  Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2013). Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling. Journal of Environmental and Engineering Geophysics,18(1), 1–25. https://doi.org/10.2113/JEEG18.1.1.

    Article  Google Scholar 

  • Corwin, D. L., & Plant, R. E. (2005). Applications of apparent soil electrical conductivity in precision agriculture. Computers and Electronics in Agriculture,46, 1–3. https://doi.org/10.1016/j.compag.2004.10.004.

    Article  Google Scholar 

  • Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrigation and Drainage Systems,19(3–4), 223–249.

    Article  Google Scholar 

  • Daccache, A., Ciurana, J. S., Diaz, J. R., & Knox, J. W. (2014). Water and energy footprint of irrigated agriculture in the Mediterranean region. Environmental Research Letters,9(12), 124014. https://doi.org/10.1088/1748-9326/9/12/124014.

    Article  Google Scholar 

  • Davies, W. J., Kudoyarova, G., & Hartung, W. (2005). Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. Journal of Plant Growth Regulation, 24(4), 285. https://doi.org/10.1007/s00344-005-0103-1.

    Article  CAS  Google Scholar 

  • Dodd, I. C., Egea, G., Watts, C. W., & Whalley, W. R. (2010). Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying. Journal of Experimental Botany,61(13), 3543–3551. https://doi.org/10.1093/jxb/erq195.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, R. T., Perry, R. L., & Ferree, D. C. (1995). Root distribution patterns of nine apple rootstock in two contrasting soil types. Journal of the American Society for Horticultural Science,120(1), 6–13.

    Article  Google Scholar 

  • Ferree, D. C., & Streeter, J. G. (2004). Response of container-grown grapevines to soil compaction. HortScience,39(6), 1250–1254.

    Article  Google Scholar 

  • Ferreira, M. I. (2017). Stress coefficients for soil water balance combined with water stress indicators for irrigation scheduling of woody crops. Horticulturae,3(2), 38. https://doi.org/10.3390/horticulturae3020038.

    Article  Google Scholar 

  • Fouli, Y., Duiker, S. W., Fritton, D. D., Hall, M. H., Watson, J. E., & Johnson, D. H. (2012). Double cropping effects on forage yield and the field water balance. Agricultural Water Management,115, 104–117. https://doi.org/10.1016/j.agwat.2012.08.014.

    Article  Google Scholar 

  • Green, S. R., & Clothier, B. E. (1999). The rootzone dynamics of water uptake by a mature apple tree. Plant and Soil,206, 61–77. https://doi.org/10.1023/A:1004368906698.

    Article  Google Scholar 

  • Green, S. R., Vogeler, I., Clothier, B. E., Mills, T. M., & Van Den Dijssel, C. (2003). Modelling water uptake by a mature apple tree. Soil Research,41(3), 365–380. https://doi.org/10.1071/SR02129.

    Article  Google Scholar 

  • Haberle, J., & Svoboda, P. (2015). Calculation of available water supply in crop root zone and the water balance of crops. Contributions to Geophysics and Geodesy,45(4), 285–298. https://doi.org/10.1515/congeo-2015-0025.

    Article  Google Scholar 

  • Haghverdi, A., Leib, B. G., Washington-Allen, R. A., Ayers, P. D., & Buschermohle, M. J. (2015). Perspectives on delineating management zones for variable rate irrigation. Computers and Electronics in Agriculture,117, 154–167. https://doi.org/10.1016/j.compag.2015.06.019.

    Article  Google Scholar 

  • Hedley, C. B., Bradbury, S., Ekanayake, J., Yule, I. J., & Carrick, S. (2010, November). Spatial irrigation scheduling for variable rate irrigation. In Proceedings of the New Zealand Grassland Association (Vol. 72, pp. 97-102). New Zealand Grassland Association.

  • Hedley, C. B., & Yule, I. J. (2009). A method for spatial prediction of daily soil water status for precise irrigation scheduling. Agricultural Water Management,96(12), 1737–1745. https://doi.org/10.1016/j.agwat.2009.07.009.

    Article  Google Scholar 

  • Herppich, W. B., & Geyer, M. (2001). Osmotic and elastic adjustment, and product quality in cold-stored carrot roots (Daucus carota L). Gartenbauwissenschaft,66(1), 20–26.

    Google Scholar 

  • Hezarjaribi, A., & Sourell, H. (2007). Feasibility study of monitoring the total available water content using non-invasive electromagnetic induction-based and electrode-based soil electrical conductivity measurements. Irrigation and Drainage: The Journal of the International Commission on Irrigation and Drainage,56(1), 53–65. https://doi.org/10.1002/ird.289.

    Article  Google Scholar 

  • Horney, R. D., Taylor, B., Munk, D. S., Roberts, B. A., Lesch, S. M., & Plant, R. E. (2005). Development of practical site-specific management methods for reclaiming salt-affected soil. Computers and Electronics in Agriculture,46(1–3), 379–397. https://doi.org/10.1016/j.compag.2004.11.008.

    Article  Google Scholar 

  • Humphreys, M. T., Raun, W. R., Martin, K. L., Freeman, K. W., Johnson, G. V., & Stone, M. L. (2005). Indirect estimates of soil electrical conductivity for improved prediction of wheat grain yield. Communications in Soil Science and Plant Analysis,35(17–18), 2639–2653. https://doi.org/10.1081/LCSS-200030421.

    Article  Google Scholar 

  • Hunink, J. E., Contreras, S., Soto-García, M., Martin-Gorriz, B., Martinez-Álvarez, V., & Baille, A. (2015). Estimating groundwater use patterns of perennial and seasonal crops in a Mediterranean irrigation scheme, using remote sensing. Agricultural Water Management,162, 47–56. https://doi.org/10.1016/j.agwat.2015.08.003.

    Article  Google Scholar 

  • Hunsaker, D. J., French, A. N., Waller, P. M., Bautista, E., Thorp, K. R., Bronson, K. F., et al. (2015). Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA. Agricultural Water Management,159, 209–224. https://doi.org/10.1016/j.agwat.2015.06.016.

    Article  Google Scholar 

  • Hurley, M. B., & Rowarth, J. S. (1999). Resistance to root growth and changes in the concentrations of ABA within the root and xylem sap during root-restriction stress. Journal of Experimental Botany,50(335), 799–804. https://doi.org/10.1093/jxb/50.335.799.

    Article  CAS  Google Scholar 

  • Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evaporation and irrigation water requirements. ASCE Manuals and Reports on Eng. Practices No. 70, New York.

  • Kadayifçi, A., Öz, H., & Atilgan, A. (2010). The effects of different irrigation methods on root distribution, intensity and effective root depth of young dwarf apple trees. African Journal of Biotechnology,9(27), 4217–4224.

    Google Scholar 

  • Käthner, J., Ben-Gal, A., Gebbers, R., Peeters, A., Herppich, W. B., & Zude-Sasse, M. (2017). Evaluating spatially resolved influence of soil and tree water status on quality of European plum grown in semi-humid climate. Frontiers in Plant Science,8, 1053. https://doi.org/10.3389/fpls.2017.01053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauri, P. É., Marceron, A., Normand, F., Dambreville, A., & Regnard, J. L. (2013). Soil water deficit decreases xylem conductance efficiency relative to leaf area and mass in the apple. Journal of Plant Hydraulics,1, e0003.

    Google Scholar 

  • Levin, I., Assaf, R., & Bravdo, B. (1979). Soil moisture and root distribution in an apple orchard irrigated by tricklers. Plant and Soil,52(1), 31–40.

    Article  Google Scholar 

  • Lo, T. H., Heeren, D. M., Mateos, L., Luck, J. D., Martin, D. L., Miller, K. A., … Shaver, T. M. (2017). Field characterization of field capacity and root zone available water capacity for variable rate irrigation. Applied Engineering in Agriculture, 33(4), 559–572. https://doi.org/10.13031/aea.11963.

  • McCutcheon, M. C., Farahani, H. J., Stednick, J. D., Buchleiter, G. W., & Green, T. R. (2006). Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field. Biosystems Engineering,94(1), 19–32. https://doi.org/10.1016/j.biosystemseng.2006.01.002.

    Article  Google Scholar 

  • Moral, F. J., Terrón, J. M., & Rebollo, F. J. (2011). Site-specific management zones based on the Rasch model and geostatistical techniques. Computers and Electronics in Agriculture,75(2), 223–230. https://doi.org/10.1016/j.still.2009.12.002.

    Article  Google Scholar 

  • Naor, A., Gal, Y., & Peres, M. (2006). The inherent variability of water stress indicators in apple, nectarine and pear orchards, and the validity of a leaf-selection procedure for water potential measurements. Irrigation Science,24(2), 129–135. https://doi.org/10.1007/s00271-005-0016-6.

    Article  Google Scholar 

  • Naor, A., Klein, I., Hupert, H., Grinblat, Y., Peres, M., & Kaufman, A. (1999). Water stress and crop level interactions in relation to nectarine yield, fruit size distribution, and water potentials. Journal of the American Society for Horticultural Science,124(2), 189–193.

    Article  Google Scholar 

  • Oldoni, H., & Bassoi, L. H. (2016). Delineation of irrigation management zones in a quartzipsamment of the Brazilian semiarid region. Pesquisa Agropecuária Brasileira,51(9), 1283–1294. https://doi.org/10.1590/s0100-204x2016000900028.

    Article  Google Scholar 

  • Paço, T. A., Ferreira, M. I., Rosa, R. D., Paredes, P., Rodrigues, G. C., Conceição, N., … Pereira, L. S. (2012). The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrigation Science, 30(2), 115–126. https://doi.org/10.1007/s00271-011-0267-3.

  • Panagopoulos, T., Jesus, J., Antunes, M. D. C., & Beltrao, J. (2006). Analysis of spatial interpolation for optimising management of a salinized field cultivated with lettuce. European Journal of Agronomy,24(1), 1–10. https://doi.org/10.1016/j.eja.2005.03.001.

    Article  Google Scholar 

  • Pathak, H. S., Brown, P., & Best, T. (2019). A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture. https://doi.org/10.1007/s11119-019-09653-x.

    Article  Google Scholar 

  • Peeters, A., Zude, M., Käthner, J., Ünlü, M., Kanber, R., Hetzroni, A., … Ben-Gal, A. (2015). Getis–Ord’s hot-and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Computers and Electronics in Agriculture, 111, 140–150. https://doi.org/10.1016/j.compag.2014.12.011.

  • Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management,147, 4–20. https://doi.org/10.1016/j.agwat.2014.07.031.

    Article  Google Scholar 

  • Pérez-Pastor, A., Ruiz-Sánchez, M. C., & Domingo, R. (2014). Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees. Agricultural Water Management,134, 110–118. https://doi.org/10.1016/j.agwat.2013.12.007.

    Article  Google Scholar 

  • Phogat, V., Skewes, Mark A., Mahadevan, M., et al. (2013). Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions. Agricultural Water Management,118, 1–11. https://doi.org/10.1016/j.agwat.2012.11.015.

    Article  Google Scholar 

  • Puértolas, J., Conesa, M. R., Ballester, C., & Dodd, I. C. (2014). Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. Journal of Experimental Botany,66(8), 2325–2334. https://doi.org/10.1093/jxb/eru501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Pérez, J. R., Plant, R. E., Lambert, J. J., & Smart, D. R. (2011). Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precision Agriculture,12(6), 775–794. https://doi.org/10.1007/s11119-011-9220-y.

    Article  Google Scholar 

  • Scheff, S. W. (2016). Fundamental statistical principles for the neurobiologist: A survival guide. Academic Press. https://doi.org/10.1016/C2015-0-02471-6.

  • Shaner, D. L., Khosla, R., Brodahl, M. K., Buchleiter, G. W., & Farahani, H. J. (2008). How well does zone sampling based on soil electrical conductivity maps represent soil variability? Agronomy Journal,100(5), 1472–1480. https://doi.org/10.2134/agronj2008.0060.

    Article  Google Scholar 

  • Sponagel, H., Grottenthaler, W., Hartmann, K. J., Hartwich, R., Jaentzko, P., Joisten, H., Kühn, D., Sabel, K.J., Traidel, R. (2005). Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften und Rohstoffe und den Geologischen Landesämtern in der Bundesrepublik Deutschland Hannover. https://doi.org/10.1017/cbo9781107415324.004.

  • Sudduth, K. A. (1999). Engineering technologies for precision farming. International seminar on agricultural mechanization technology for precision farming (pp. 5–27). Rural Development Admin: Suwon.

    Google Scholar 

  • Sudduth, K. A., Kitchen, N. R., Wiebold, W. J., Batchelor, W. D., Bollero, G. A., Bullock, D. G., … Thelen, K. D. (2005). Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture, 46(1–3), 263–283. https://doi.org/10.1016/j.compag.2004.11.010.

  • Taubner, H., Roth, B., & Tippkötter, R. (2009). Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. Journal of Plant Nutrition and Soil Science,172(2), 161–171. https://doi.org/10.1002/jpln.200800085.

    Article  CAS  Google Scholar 

  • Tombesi, S., Johnson, R. S., Day, K. R., & DeJong, T. M. (2009). Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Annals of Botany,105(2), 327–331.

    Article  Google Scholar 

  • Trought, M. C., & Bramley, R. G. (2011). Vineyard variability in Marlborough, New Zealand: characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Australian Journal of Grape and Wine Research,17(1), 79–89. https://doi.org/10.1111/j.1755-0238.2010.00120.x.

    Article  Google Scholar 

  • Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrigation Science,9(4), 289–308.

    Article  Google Scholar 

  • Tworkoski, T., Fazio, G., & Glenn, D. M. (2016). Apple rootstock resistance to drought. Scientia Horticulturae,204, 70–78. https://doi.org/10.1016/j.scienta.2016.01.047.

    Article  CAS  Google Scholar 

  • van Genuchten, M. T., & Pachepsky, Y. A. (2011). Hydraulic properties of unsaturated soils. In Encyclopedia of agrophysics (pp. 368–376). Dordrecht: Springer. https://doi.org/10.1007/978-90-481-3585-1_69.

  • Verstraeten, W. W., Veroustraete, F., & Feyen, J. (2008). Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors,8(1), 70–117. https://doi.org/10.3390/s8010070.

    Article  PubMed  Google Scholar 

  • Watson, T. W., Appel, N. D., Arnold, A. M., & Kenerley, M. C. (2006). Spatial distribution of Malus root systems in irrigated, trellised orchards. The Journal of Horticultural Science & Biotechnology,81(4), 745–753. https://doi.org/10.1080/14620316.2006.11512132.

    Article  Google Scholar 

  • Whitmore, A. P., & Whalley, W. R. (2009). Physical effects of soil drying on roots and crop growth. Journal of Experimental Botany,60(10), 2845–2857. https://doi.org/10.1093/jxb/erp200.

    Article  CAS  PubMed  Google Scholar 

  • Zude-Sasse, M., Fountas, S., Gemtos, T. A., & Abu-Khalaf, N. (2016). Applications of precision agriculture in horticultural crops. European Journal for Horticultural Science,81(2), 78–90. https://doi.org/10.17660/ejhs.2016/81.2.2.

    Article  Google Scholar 

Download references

Funding

Funding was supported by EIP-AGRI, ILB, Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft (MLUL) Brandenburg, (Grant no. 2045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Zude-Sasse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoulias, N., Gebbers, R. & Zude-Sasse, M. Using data on soil ECa, soil water properties, and response of tree root system for spatial water balancing in an apple orchard. Precision Agric 21, 522–548 (2020). https://doi.org/10.1007/s11119-019-09680-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09680-8

Keywords

Navigation