ABARES (2017). Agricultural commodity statistics 2017. Australian Bureau of Agricultural and Resource Economics and Sciences, Department of Agriculture and Water Resources, Canberra. http://data.daff.gov.au/data/warehouse/agcstd9abcc002/agcstd9abcc0022017_IugZg/ACS_2017_v1.1.0_lr.pdf. Accessed March 2018.
Adams, M. L., Cook, S. E., Caccetta, P. A., & Pringle, M.J. (1999). Machine learning methods in site-specific management research: An Australian case study. In Robert, P. C., Rust, R. H. & Larsen, W. E. (Eds.) Proceedings of the Fourth International Conference on Precision Agriculture (pp. 1321–1333). Madison, WI, USA: ASA-CSSA-SSSA.
Aldana, U., Foltz, J. D., Barham, B. L., & Useche, P. (2010). Sequential adoption of package technologies: The dynamics of stacked trait corn adoption. American Journal of Agricultural Economics,
93, 130–143.
Article
Google Scholar
Bramley, R. G. V., & Trengove, S. (2013). Precision Agriculture in Australia: present status and recent developments. Engenharia Agricola,
33, 575–588.
Article
Google Scholar
Cann, M. A. (2000). Clay spreading on water repellent sands in the southeast of South Australia—promoting sustainable agriculture. Journal of Hydrology,
231–232, 333–341.
Article
Google Scholar
Carberry, P. S., Hochman, Z., McCown, R. L., Dalgliesh, N. P., Foale, M. A., Hargreaves, J. N. G., et al. (2002). The Farmscape approach to decision support: Farmers’, advisers’, researchers’ monitoring, simulation, communication and performance evaluation. Agricultural Systems,
74, 141–177.
Article
Google Scholar
Colaço, A. F., & Bramley, R. G. V. (2018). Do crop sensors promote improved nitrogen management in grain crops? Field Crops Research,
218, 126–140.
Article
Google Scholar
Cook, S. E., & Bramley, R. G. V. (1998). Precision agriculture—Opportunities, benefits and pitfalls of site-specific crop management in Australia. Australian Journal of Experimental Agriculture,
38, 753–763.
Article
Google Scholar
Cook, S. E., Corner, R. J., Riethmuller, G., Mussel, G., & Maitland, M. D. (1996). Precision agriculture and risk analysis: An Australian example. In Robert, P. C., Rust, R. H. & Larsen, W. E. (Eds.) Proceedings of the Third International Conference on Precision Agriculture (pp. 1123–1132). Madison, WI, USA: ASA-CSSA-SSSA.
Corsini, L., Wagner, K., Gocke, A., & Kurth, T. (2015). Crop farming 2030: The reinvention of the sector. Boston: The Boston Consulting Group. https://www.bcg.com/en-au/publications/2015/crop-farming-2030-reinvention-sector.aspx. Accessed March 2018.
Evans, K. J., Terhorst, A., & Ho Kang, B. (2017). From data to decisions: Helping crop producers build their actionable knowledge. Critical Reviews in Plant Sciences,
36, 71–88.
Article
Google Scholar
Hall, D. J. M., Jones, H. R., Crabtree, W. L., & Daniels, T. L. (2010). Claying and deep ripping can increase crop yields and profits on water repellent sands with marginal fertility in southern Western Australia. Australian Journal of Soil Research,
48, 178–187.
Article
Google Scholar
Hochman, Z., van Rees, H., Carberry, P. S., Hunt, J. R., McCown, R. L., Gartmann, A., et al. (2009). Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet® helps farmers monitor and manage crops in a variable climate. Crop and Pasture Science,
60, 1057–1070.
Article
Google Scholar
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy,
18, 267–288.
Article
Google Scholar
Keogh, M., & Henry, M. (2016). The implications of digital agriculture and big data for australian agriculture (p. 68). Research Report, Sydney, Australia: Australian Farm Institute.
Kirkegaard, J. A., Hunt, J. R., McBeath, T. M., Lilley, J. M., Moore, A., Verburg, K., et al. (2014). Improving water productivity in the Australian grains industry—a nationally coordinated approach. Crop and Pasture Science,
65, 583–601.
Article
Google Scholar
Lawes, R. A., Oliver, Y. M., & Robertson, M. J. (2009). Integrating the effects of climate and plant available soil water holding capacity on wheat yield. Field Crops Research,
113, 297–305.
Article
Google Scholar
Leonard, E., Rainbow, R., Trindall, J., Baker, I., Barry, S., Darragh, L., et al. (2017). Overview—Accelerating precision agriculture to decision agriculture: Enabling digital agriculture in Australia. Narrabri: Cotton Research and Development Corporation. http://farminstitute.org.au/LiteratureRetrieve.aspx?ID=161055. Accessed March 2018.
Llewellyn, R., & Ouzman, J. (2015). Adoption of precision agriculture-related practices: status, opportunities and the role of farm advisers. https://grdc.com.au/__data/assets/pdf_file/0024/208653/adoption-of-precision-agricultural-related-practices-status-opportunities-and-the-role-of-farm-advisers-2014.pdf.pdf. Accessed March 2018.
Llewellyn, R. S., Ronning, D., Ouzman, J., Walker, S., Mayfield, A., & Clarke, M. (2016). Impact of weeds on Australian grain production: The cost of weeds to Australian grain growers and the adoption of weed management and tillage practices. Report for GRDC. CSIRO, Australia. https://grdc.com.au/__data/assets/pdf_file/0027/75843/grdc_weeds_review_r8.pdf.pdf. Accessed March 2018.
Llewellyn, R., Whitbread, A., Jones, B., & Davoren, B. (2008). The role for EM mapping in precision agriculture in the Mallee. In Unkovich, M. (Ed.) Global issues, paddock action. Proceedings of the 14th Australian Agronomy Conference. Gosford, NSW: Australian Society of Agronomy/The Regional Institute Ltd. www.regional.org.au/au/asa/2008/concurrent/managing-site-season/5915_llewellynrl.htm#TopOfPage. Accessed June 2018.
Mark, T. B., Griffin, T. W., & Whitacre, B. E. (2016). The role of wireless broadband connectivity on ‘Big Data’ and the agricultural industry in the United States and Australia. International Food and Agribusiness Management Review,
19(A), 43–56.
Google Scholar
McBeath, T. M., Gupta, V. V. S. R., Llewellyn, R. S., Davoren, C. W., & Whitbread, A. M. (2015). Break-crop effects on wheat production across soils and seasons in a semi-arid environment. Crop and Pasture Science,
66, 566–579.
Article
CAS
Google Scholar
Miller, N. J., Griffin, T. W., Bergold, J., Ciampitti, I. A., & Sharda, A. (2017). Farmers’ adoption path of precision agriculture technology. In Taylor, J. A., Cammarano, D., Prashar, A. & Hamilton, A. (Eds.) Proceedings of the 11th European Conference on Precision Agriculture. Advances in Animal Biosciences: Precision Agriculture (ECPA) 2017 (Vol. 8, No. 2, pp. 708–712).
Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture,
18, 701–716.
Article
Google Scholar
Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., et al. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis,
36, 2759–2781.
Article
CAS
Google Scholar
Robertson, M. J., Llewellyn, R. S., Mandel, R., Lawes, R., Bramley, R. G. V., Swift, L., et al. (2012). Adoption of variable rate technology in the Australian grains industry: status, issues and prospects. Precision Agriculture,
13, 181–199.
Article
Google Scholar
Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York, USA: Free Press.
Google Scholar
SAS Institute Inc. (2013). JMP 11 basic analysis. Cary, NC, USA: SAS Institute Inc.
Google Scholar
Schimmelpfennig, D., & Ebel, R. (2011). On the doorstep of the information age: Recent adoption of precision agriculture. Washington, DC: EIB-80, U.S. Department of Agriculture, Economic Research Service.
Sonka, S. (2014). Big data and the Ag sector: More than lots of numbers. International Food and Agribusiness Management Review,
17, 1–20.
Google Scholar
Taylor, J. A., McBratney, A. B., & Whelan, B. M. (2007). Establishing management classes for broadacre agricultural production. Agronomy Journal,
99, 1366–1376.
Article
Google Scholar
Webster, T., Panitz, J., Jensen, T., & Bramley, R. (2016). Industry perspectives on precision agriculture. Proceedings of the Australian Society of Sugar Cane Technologists,
38, 29–39.
Google Scholar
Whelan, B., & Taylor, J. (2013). Precision agriculture for grain production systems. Collingwood, VIC: CSIRO Publishing.
Book
Google Scholar
Whitbread, A., Llewellyn, R., Gobbett, D. L., & Davoren, B. (2008). EM38 and crop-soil simulation modelling can identify differences in potential crop performance on typical soil zones in the Mallee. In Unkovich, M. (Ed.) Global issues, paddock action. Proceedings of the 14th Australian Agronomy Conference. Gosford, NSW: Australian Society of Agronomy/The Regional Institute Ltd. www.regional.org.au/au/asa/2008/poster/agronomy-landscape/5823_whitbread.htm. Accessed June 2018.
Wilkinson, R. (2011). The many meanings of adoption. In D. Pannell, & F. Vanclay (Eds.), Changing land management: Adoption of new practices by rural landholders (pp. 39–49). Collingwood, VIC: CSIRO Publishing.
Google Scholar
Wong, M. T. F., Asseng, S., Robertson, M. J., & Oliver, Y. (2008). Mapping subsoil acidity and shallow soil across a field with information from yield maps, geophysical sensing and the grower. Precision Agriculture,
9, 3–15.
Article
Google Scholar