Skip to main content

Advertisement

Log in

Processing of Yield Map Data

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract.

Yield maps reflect systematic and random sources of yield variation as well as numerous errors caused by the harvest and mapping procedures used. A general framework for processing of multi-year yield map data was developed. Steps included (1) raw data screening, (2) standardization, (3) interpolation, (4) classification of multi-year yield maps, (5) post-classification spatial filtering to create spatially contiguous yield classes, and (6) statistical evaluation of classification results. The techniques developed allow more objective mapping of yield zones, which are an important data layer in algorithms for prescribing variable rates of production inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. Arslan T. S. Colvin (2002a) ArticleTitleAn evaluation of the response of yield monitors and combines to varying yields Precision Agriculture 3 107–122

    Google Scholar 

  • S. Arslan T. S. Colvin (2002b) ArticleTitleGrain yield mapping: yield sensing, yield reconstruction, and errors Precision Agriculture 3 135–154

    Google Scholar 

  • J. P. Beal L. F. Tian (2001) ArticleTitleTime shift evaluation to improve yield map quality Applied Engineering in Agriculture 17 385–390

    Google Scholar 

  • A. D. Beck J. P. Roades S. W. Searcy (1999) Post-process filtering techniques to improve yield map accuracy. ASAE Paper No. 99-1048. ASAE St. Joseph, USA

    Google Scholar 

  • B. S. Blackmore (2000) ArticleTitleThe interpretation of trends from multiple yield maps Computers and Electronics in Agriculture 26 37–51

    Google Scholar 

  • B. S. Blackmore M. Moore (1999) ArticleTitleRemedial correction of yield map data Precision Agriculture 1 53–66

    Google Scholar 

  • A. Boydell A. B. McBratney (2002) ArticleTitleIdentifying potential within-field management zones from cotton-yield estimates Precision Agriculture 3 9–23

    Google Scholar 

  • A. Dobermann J. L. Ping (2004) ArticleTitleGeostatistical integration of yield monitor data and remote sensing improves yield maps Agronomy Journal 96 285–297

    Google Scholar 

  • A. Dobermann J. L. Ping V. I. Adamchuk G. C. Simbahan R. B. Ferguson (2003) ArticleTitleClassification of crop yield variability in irrigated production fields Agronomy Journal 95 1105–1120

    Google Scholar 

  • L. T. Evans (1993) Crop Evolution, Adaptation, and Yield Cambridge University Press Cambridge, UK 500

    Google Scholar 

  • R. M. Lark (1998) ArticleTitleForming spatially coherent regions by classification of multivariate data International Journal Geographical Information Science 12 83–98

    Google Scholar 

  • R. M. Lark H. C. Bolam J. V. Stafford (1997) ArticleTitleLimits to the spatial resolution of yield mapping systems for combinable crops Journal of Agricultural Engineering Research 66 183–193

    Google Scholar 

  • R. M. Lark J. V. Stafford (1997) ArticleTitleClassification as a first step in the interpretation of temporal and spatial variation of crop yield Annals of Applied Biology 130 111–121

    Google Scholar 

  • R. M. Lark J. V. Stafford (1998) ArticleTitleInformation on within-field variability from sequences of yield maps: Multivariate classification as a first step of interpretation Nutrient Cycling in Agroecosystems 50 277–281

    Google Scholar 

  • R. M. Lark H. C. Wheeler (2003) ArticleTitleA method to investigate within-field variation of the response of combinable crops to an input Agronomy Journal 95 1093–1104

    Google Scholar 

  • Leica Geosystems (2003) ERDAS IMAGINE® Field Guide, 7th edn Leica Geosystems Atlanta, GA, USA

    Google Scholar 

  • B. Minasny A. B. McBratney (2003) FuzME version 3.0. http://www.usyd.edu.au/su/agric/acpa. Last accessed June 10, 2004. Australian Centre for Precision Agriculture The University of Sydney, Sydney

    Google Scholar 

  • B. Minasny A. B. McBratney B. M. Whelan (2002) VESPER version 1.5. http://www.usyd.edu.au/su/agric/acpa. Last accessed June 10, 2004. Australian Centre for Precision Agriculture The University of Sydney, Sydney

    Google Scholar 

  • P. H. Noack T. Muhr M. Demmel (2003) An algorithm for automatic detection and elimination of defective yield data In: Precision agriculture. Proceedings of the 4th European Conference in Precision Agriculture edited by J. V. Stafford and A. Werner (Wageningen Academic Publishers, Wageningen, The Netherlands), p. 445–450

    Google Scholar 

  • M. A. Oliver R. Webster (1989) ArticleTitleA geostatistical basis for spatial weighting in multivariate classification Mathematical Geology 21 15–35

    Google Scholar 

  • J. L. Ping A. Dobermann (2003) ArticleTitleCreating spatially contiguous yield classes for site-specific management Agronomy Journal 95 1121–1131

    Google Scholar 

  • M. Roubens (1982) ArticleTitleFuzzy clustering algorithms and their cluster validity European Journal of Operational Research 10 294–301

    Google Scholar 

  • SAS Institute Inc (1999) SAS System Version 8.0 SAS Institute Inc. Cary, NC, USA

    Google Scholar 

  • G. C. Simbahan A. Dobermann J. L. Ping (2004) ArticleTitleScreening yield monitor data improves grain yield maps Agronomy Journal 96 1091–1102

    Google Scholar 

  • Soil Survey Staff 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (USDA-NRCS, Washington, DC, USA), p. 869.

  • J. V. Stafford B. Ambler R. M. Lark J. Catt (1996) ArticleTitleMapping and interpreting the yield variation in cereal crops Computers and Electronics in Agriculture 14 101–119

    Google Scholar 

  • R. K. Taylor G. J. Kluitenberg M. D. Schrock N. Zhang J. P. Schmidt J. L. Havin (2001) ArticleTitleUsing yield monitor data to determine spatial crop production potential Transactions of the ASAE 44 1409–1414

    Google Scholar 

  • R. Webster M. A. Oliver (1990) Statistical Methods in Soil and Land Resource Survey Oxford Univ Press Oxford, UK 316

    Google Scholar 

  • B. M. Whelan A. B. McBratney (2000) ArticleTitleAn approach to deconvoluting grain-flow within a conventional combine harvester using a parametric transfer function Precision Agriculture 2 389–398

    Google Scholar 

  • B. M. Whelan A. B. McBratney (2002) ArticleTitleA parametric transfer function for grain-flow within a conventional combine harvester Precision Agriculture 3 123–134

    Google Scholar 

  • H. S. Yang A. Dobermann J. L. Lindquist D. T. Walters T. J. Arkebauer K. G. Cassman (2004) ArticleTitleHybrid-Maize—a maize simulation model that combines two crop modeling approaches Field Crops Research 87 131–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Ping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ping, J.L., Dobermann, A. Processing of Yield Map Data. Precision Agric 6, 193–212 (2005). https://doi.org/10.1007/s11119-005-1035-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-005-1035-2

Keywords

Navigation