Skip to main content
Log in

Marcinkiewicz Estimates for Solutions of Some Elliptic Problems with Singular Data

  • Research
  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove regularity result for solutions of the boundary value problem

$$ \left\{ \begin{array}{cl} -{{\,\textrm{div}\,}}(M(x)\,\nabla u) + u = -{{\,\textrm{div}\,}}(u\,E(x)) + f(x)\,, &{} \text{ in }\,\, \Omega , \\ u = 0\,, &{} \text{ on }\,\,\partial \Omega , \end{array} \right. $$

with the vector field E(x) and the function f(x) belonging to some Marcinkiewicz spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J. L.: An \(L^{1}\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 241–273. (1995)

  2. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, x+207 (1976)

  3. Boccardo, L.: Problemi differenziali ellittici e parabolici con dati misure. Conferenza generale al Congresso UMI 1995. Boll. Unione Mat. Ital. 11-A, 439–461 (1997)

  4. Boccardo, L.: Some developments on Dirichlet problems with discontinuous coefficients. Boll. Unione Mat. Ital. 2, 285–297 (2009)

    MathSciNet  Google Scholar 

  5. Boccardo, L.: Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data. Ann. Mat. Pura Appl. 188, 591–601 (2009) https://doi.org/10.1007/s10231-008-0090-5

  6. Boccardo, L.: Finite energy solutions of nonlinear Dirichlet problems with discontinuous coefficients. Boll. Unione Mat. Ital. 5, 357–368 (2012)

    MathSciNet  Google Scholar 

  7. Boccardo, L.: Dirichlet problems with singular convection terms and applications. J. Differ Equ. 258, 2290–2314 (2015). https://doi.org/10.1016/j.jde.2014.12.009

    Article  MathSciNet  Google Scholar 

  8. Boccardo, L.: The impact of the zero order term in the study of Dirichlet problems with convection or drift terms. Rev. Mat. Complut. 36, 571–605 (2023). https://doi.org/10.1007/s13163-022-00434-1

  9. Boccardo, L., Croce, G.: Elliptic partial differential equations. De Gruyter Studies in Mathematics, 55, De Gruyter, x+192 (2014)

  10. Boccardo, L., Gallouët. T: Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differ. Equ. 17, 641–655 (1992). https://doi.org/10.1080/03605309208820857

  11. Boccardo, L., Orsina, L., Porzio, M.M.: Asymptotic behavior of solutions for nonlinear parabolic problems with Marcinkiewicz data. J. Evol. Equ. 23, Paper no. 77 (2023)

  12. Hartman, P., Stampacchia, G.: On some non-linear elliptic differential-functional equations. Acta Math. 115, 271–310 (1966). https://doi.org/10.1007/BF02392210

    Article  MathSciNet  Google Scholar 

  13. Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France. 93, 97–107 (1965)

    Article  MathSciNet  Google Scholar 

  14. Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346, 571–627 (2010). https://doi.org/10.1007/s00208-009-0411-z

    Article  MathSciNet  Google Scholar 

  15. Stampacchia, G.: Problemi al contorno ellittici, con dati discontinui, dotati di soluzionie hölderiane. Ann. Mat. Pura Appl. 51, 1–37 (1960). https://doi.org/10.1007/BF02410941

    Article  MathSciNet  Google Scholar 

  16. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble). 15, 189–258 (1965)

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks J. Lopez Gomez for the invitation to Universidad Complutense Madrid, where the first version (E bounded) of this paper was presented.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors of this manuscript have participated in conducting the research and writing the manuscript.

Corresponding author

Correspondence to Luigi Orsina.

Ethics declarations

Competing interests

The authors of this manuscript have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

As stated in the Introduction, we prove here a Real Analysis lemma which will be used in the proof of Theorem 2.1.

Lemma A.1

Let \(\{u_{n}\}\) be a sequence bounded in \(L^{1}(\Omega )\): \(\Vert {u_{n}}\Vert _{1} \le R\). Let \(0< \theta < 1\), \(k_{0} > 0\), \(Q > 0\), and suppose that

$$\begin{aligned} g_{n}(k) \le Q\,|A_{n}(k)|^{1 - \theta }\,, \qquad \forall \, k \ge k_{0}\,, \end{aligned}$$
(1.1)

where

$$ g_{n}(k) = \displaystyle \int _{\Omega }\,|G_{k}(u_{n})|\,. $$

Then there exist \(k_{1} = k_{1}(Q,R)\ge k_{0}\) and \(C = C(\theta )\) such that

$$\begin{aligned} |A_{n}(k)| \le C\,\frac{Q^{\frac{1}{\theta }}}{k^{\frac{1}{\theta }}}\,, \qquad \forall \, k \ge k_{1}\,. \end{aligned}$$
(1.2)

Proof

We recall the classical result

$$ |A_{n}(k)| = -g'_n(k)\,, $$

whose simple proof uses Cavalieri’s principle as follows:

$$ \begin{array}{rcl} g_{n}(k) &{} = &{} \displaystyle \int _{\Omega }\,|G_{k}(u_{n})| = \displaystyle \int _0^{+\infty }|\{|G_k(u_{n})|\ge t\}|\,dt \\ &{} = &{} \displaystyle \int _0^{+\infty }|\{|u_{n}|\ge t+k\}|\,dt = \displaystyle \int _k^{+\infty }|A_n(s)|\,ds\,. \end{array} $$

Therefore, (A.1) can be rewritten as

$$ g_{n}(k) \le Q\,(-g'_n(k))^{1 - \theta } \quad \iff \quad Q^{\frac{1}{1-\theta }}\,g'_n(k) \le -(g_{n}(k))^{\frac{1}{1-\theta }}\,. $$

Dividing by \((g_{n}(k))^{\frac{1}{1-\theta }}\), we thus have

$$ Q^{\frac{1}{1-\theta }}\,\frac{g'_n(k)}{(g_{n}(k))^{\frac{1}{1-\theta }}} \le -1\,. $$

Integrating between \(k_{0}\) and k, we have

$$ Q^{\frac{1}{1-\theta }}\,\int _{k_{0}}^{k}\,\frac{g_{n}'(h)}{(g_{n}(h))^{\frac{1}{1-\theta }}}\,dh \le k_{0} - k\,, $$

so that

$$ -Q^{\frac{1}{1-\theta }}\,\frac{1-\theta }{\theta }\,s^{-\frac{\theta }{1 - \theta }}\Big |_{g_{n}(k_{0})}^{g_{n}(k)} \le k_{0} - k\,. $$

From this inequality it follows that

$$ Q^{\frac{1}{1-\theta }}\,\frac{1-\theta }{\theta }[(g_{n}(k_{0}))^{-\frac{\theta }{1 - \theta }} - (g_{n}(k))^{-\frac{\theta }{1 - \theta }}] \le k_{0} - k\,, $$

which implies, after some straightforward algebraic passages, that

$$\begin{aligned} g_{n}(k) \le \frac{Q^{\frac{1}{\theta }}}{[Q^{\frac{1}{1-\theta }}\,(g_{n}(k_{0}))^{-\frac{\theta }{1-\theta }} + \frac{\theta }{1-\theta }\,(k - k_{0})]^{\frac{1 - \theta }{\theta }}}\,. \end{aligned}$$
(1.3)

We now remark that

$$ g_{n}(k_{0}) \le g_{n}(0) = \displaystyle \int _{\Omega }|u_{n}| \le R\,, $$

so that

$$ Q^{\frac{1}{1-\theta }}\,(g_{n}(k_{0}))^{-\frac{\theta }{1-\theta }} + \frac{\theta }{1-\theta }\,(k - k_{0}) \ge Q^{\frac{1}{1-\theta }}\,R^{-\frac{\theta }{1-\theta }} + \frac{\theta }{1-\theta }\,(k - k_{0}) \ge \frac{\theta }{2(1-\theta )}\,k\,, $$

if \(k \ge \tilde{k} = \tilde{k}(Q, R, k_{0})\). Thus, from (A.3), it follows that

$$\begin{aligned} g_{n}(k) \le \bigg [ \frac{2(1-\theta )}{\theta }\bigg ]^{\frac{1-\theta }{\theta }}\,Q^{\frac{1}{\theta }}\,\frac{1}{k^{\frac{1-\theta }{\theta }}}\,, \qquad \forall \, k \ge \tilde{k}\,. \end{aligned}$$
(1.4)

We now remark that

$$ g_{n}(k) = \displaystyle \int _{\Omega }|G_{k}(u_{n})| = \displaystyle \int _{A_{n}(k)}|G_{k}(u_{n})| \ge \int _{A_n(2k)}\,|G_{k}(u_{n})| \ge k\,|A_n(2k)|\,, $$

so that from (A.4) it follows that

$$ k\,|A_n(2k)| \le \bigg [ \frac{2(1-\theta )}{\theta }\bigg ]^{\frac{1-\theta }{\theta }}\,Q^{\frac{1}{\theta }}\,\frac{1}{k^{\frac{1-\theta }{\theta }}}\,, \qquad \forall \, k \ge \tilde{k}\,. $$

Dividing by k we have therefore proved that

$$ |A_n(2k)| \le \bigg [ \frac{2(1-\theta )}{\theta }\bigg ]^{\frac{1-\theta }{\theta }}\,\frac{Q^{\frac{1}{\theta }}}{k^{\frac{1}{\theta }}}\,, \qquad \forall \, k \ge \tilde{k}\,. $$

Defining \(k_{1} = 2\tilde{k}\), and

$$ C(\theta ) = 2^{\frac{1}{\theta }}\,\bigg [ \frac{2(1-\theta )}{\theta }\bigg ]^{\frac{1-\theta }{\theta }}\,, $$

we thus have proved that

$$ |A_n(2k)| \le C(\theta )\,\frac{Q^{\frac{1}{\theta }}}{(2k)^{\frac{1}{\theta }}}\,, \qquad \forall \,\;k: \ 2k \ge k_{1}\,, $$

which is (A.2).\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccardo, L., Orsina, L. Marcinkiewicz Estimates for Solutions of Some Elliptic Problems with Singular Data. Potential Anal (2024). https://doi.org/10.1007/s11118-024-10140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11118-024-10140-w

Keywords

JEL Classification

Navigation