Skip to main content
Log in

Time Regularity for Local Weak Solutions of the Heat Equation on Local Dirichlet Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We study the time regularity of local weak solutions of the heat equation in the context of local regular symmetric Dirichlet spaces. Under two basic and rather minimal assumptions, namely, the existence of certain cut-off functions and a very weak L2 Gaussian type upper bound for the heat semigroup, we prove that the time derivatives of a local weak solution of the heat equation are themselves local weak solutions. This applies, for instance, to local weak solutions of parabolic equations with uniformly elliptic symmetric divergence form second order operators with measurable coefficients. We describe some applications to the structure of ancient local weak solutions of such equations which generalize recent results of Colding and Minicozzi (Duke Math. J., 170(18), 4171–4182 2021) and Zhang (Proc. Amer. Math. Soc., 148(4), 1665–1670 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this paper as no data sets were generated or analysed in the current study.

References

  1. Andres, S., Barlow, M.T.: Energy inequalities for cutoff functions and some applications. J. Reine Angew. Math. 699, 183–215 (2015). https://doi.org/10.1515/crelle-2013-0009

    Article  MathSciNet  Google Scholar 

  2. Ariyoshi, T., Hino, M.: Small-time asymptotic estimates in local Dirichlet spaces. Electron. J. Probab. 10(37), 1236–1259 (2005). https://doi.org/10.1214/EJP.v10-286

    MathSciNet  Google Scholar 

  3. Barlow, M.T., Murugan, M.: Stability of the elliptic Harnack inequality. Ann. of Math. (2) 187(3), 777–823 (2018). https://doi.org/10.4007/annals.2018.187.3.4

    Article  MathSciNet  Google Scholar 

  4. Bendikov, A., Saloff-Coste, L.: Elliptic diffusions on infinite products. J. Reine Angew. Math. 493, 171–220 (1997). https://doi.org/10.1515/crll.1997.493.171

    MathSciNet  Google Scholar 

  5. Bendikov, A., Saloff-Coste, L.: Invariant local Dirichlet forms on locally compact groups. Ann. Fac. Sci. Toulouse Math. (6) 11(3), 303–349 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bendikov, A., Saloff-Coste, L.: Spaces of smooth functions and distributions on infinite-dimensional compact groups. J. Funct. Anal. 218(1), 168–218 (2005). https://doi.org/10.1016/j.jfa.2004.06.006

    Article  MathSciNet  Google Scholar 

  7. Bendikov, A., Saloff-Coste, L.: Hypoelliptic bi-invariant Laplacians on infinite dimensional compact groups. Canad. J. Math. 58(4), 691–725 (2006). https://doi.org/10.4153/CJM-2006-029-9

    Article  MathSciNet  Google Scholar 

  8. Bendikov, A., Saloff-Coste, L., Salvatori, M., Woess, W.: The heat semigroup and Brownian motion on strip complexes. Adv. Math. 226(1), 992–1055 (2011). https://doi.org/10.1016/j.aim.2010.07.014

    Article  MathSciNet  Google Scholar 

  9. Colding, T.H., Minicozzi, W.P. II: Optimal bounds for ancient caloric functions. Duke Math. J. 170(18), 4171–4182 (2021). https://doi.org/10.1215/00127094-2021-0015

    Article  MathSciNet  Google Scholar 

  10. Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem. Proc. Lond. Math. Soc. (3) 96(2), 507–544 (2008). https://doi.org/10.1112/plms/pdm050

    Article  MathSciNet  Google Scholar 

  11. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989). https://doi.org/10.1017/CBO9780511566158

    Book  Google Scholar 

  12. Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property, pp. 99–119. https://doi.org/10.1007/BF02790359. Festschrift on the occasion of the 70th birthday of Shmuel Agmon (1992)

  13. Davies, E.B.: Non-Gaussian aspects of heat kernel behaviour. J. London Math. Soc. (2) 55 (1), 105–125 (1997). https://doi.org/10.1112/S0024610796004607

    Article  MathSciNet  Google Scholar 

  14. Eells, J., Fuglede, B.: Harmonic Maps between Riemannian Polyhedra. Cambridge Tracts in Mathematics, vol. 142. Cambridge University Press, Cambridge (2001). With a preface by M. Gromov

    Google Scholar 

  15. Eldredge, N., Saloff-Coste, L.: Widder’s representation theorem for symmetric local Dirichlet spaces. J. Theoret. Probab. 27(4), 1178–1212 (2014). https://doi.org/10.1007/s10959-013-0484-1

    Article  MathSciNet  Google Scholar 

  16. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Mathematics, vol. 19, extended edn. Walter de Gruyter & Co., Berlin (2011)

    Google Scholar 

  17. Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque (336) viii+ 144 (2011)

  18. Hino, M.: On singularity of energy measures on self-similar sets. Probab. Theory Related Fields 132(2), 265–290 (2005). https://doi.org/10.1007/s00440-004-0396-1

    Article  MathSciNet  Google Scholar 

  19. Hino, M., Ramírez, J.A.: Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31(3), 1254–1295 (2003). https://doi.org/10.1214/aop/1055425779

    Article  MathSciNet  Google Scholar 

  20. Hou, Q., Saloff-Coste, L.: Rough hypoellipticity for the heat equation in Dirichlet spaces (2020)

  21. Hou, Q., Saloff-Coste, L.: Perturbation results concerning gaussian estimates and hypoellipticity for left-invariant laplacians on compact groups (2021)

  22. Iwasawa, K.: On some types of topological groups. Ann. of Math. (2) 50, 507–558 (1949). https://doi.org/10.2307/1969548https://doi.org/10.2307/1969548

    Article  MathSciNet  Google Scholar 

  23. Kajino, N., Murugan, M.: On singularity of energy measures for symmetric diffusions with full off-diagonal heat kernel estimates. Ann. Probab. 48 (6), 2920–2951 (2020). https://doi.org/10.1214/20-AOP1440https://doi.org/10.1214/20-AOP1440

    Article  MathSciNet  Google Scholar 

  24. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32(1), 1–76 (1985)

    MathSciNet  Google Scholar 

  25. Kuwae, K., Machigashira, Y., Shioya, T.: Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z. 238(2), 269–316 (2001). https://doi.org/10.1007/s002090100252

    Article  MathSciNet  Google Scholar 

  26. Lierl, J.: Local behavior of solutions of quasilinear parabolic equations on metric spaces. arXiv:1708.06329 (2017)

  27. Lierl, J.: Parabolic Harnack inequality on fractal-type metric measure Dirichlet spaces. Rev. Mat. Iberoam. 34(2), 687–738 (2018). https://doi.org/10.4171/RMI/1001

    Article  MathSciNet  Google Scholar 

  28. Lierl, J.: Parabolic Harnack inequality for time-dependent non-symmetric Dirichlet forms. J. Math. Pures Appl. (9) 140, 1–66 (2020). https://doi.org/10.1016/j.matpur.2020.01.001

    Article  MathSciNet  Google Scholar 

  29. Lin, F., Zhang, Q.S.: On ancient solutions of the heat equation. Comm. Pure Appl. Math. 72(9), 2006–2028 (2019). https://doi.org/10.1002/cpa.21820

    Article  MathSciNet  Google Scholar 

  30. Murugan, M., Saloff-Coste, L.: Davies’ method for anomalous diffusions. Proc. Amer. Math. Soc. 145(4), 1793–1804 (2017). https://doi.org/10.1090/proc/13324

    Article  MathSciNet  Google Scholar 

  31. Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces. J. Differential Geom. 39(3), 629–658 (1994). http://projecteuclid.org/euclid.jdg/1214455075

    Article  MathSciNet  Google Scholar 

  32. Pivarski, M., Saloff-Coste, L.: Small time heat kernel behavior on Riemannian complexes. New York J. Math. 14, 459–494 (2008)

    MathSciNet  Google Scholar 

  33. Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differential Geom. 36(2), 417–450 (1992). http://projecteuclid.org/euclid.jdg/1214448748

    Article  MathSciNet  Google Scholar 

  34. Sturm, K.T.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995). http://projecteuclid.org/euclid.ojm/1200786053

    MathSciNet  Google Scholar 

  35. Sturm, K.T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75(3), 273–297 (1996)

    MathSciNet  Google Scholar 

  36. Takeda, M.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26(3), 605–623 (1989). http://projecteuclid.org/euclid.ojm/1200781700

    MathSciNet  Google Scholar 

  37. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987). https://doi.org/10.1017/CBO9781139171755, Translated from the German by C. B. Thomas and M. J. Thomas

    Book  Google Scholar 

  38. Zhang, Q.S.: A note on time analyticity for ancient solutions of the heat equation. Proc. Amer. Math. Soc. 148(4), 1665–1670 (2020). https://doi.org/10.1090/proc/14830

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Hou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by NSF grant DMS 1404435 and DMS 1707589

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Q., Saloff-Coste, L. Time Regularity for Local Weak Solutions of the Heat Equation on Local Dirichlet Spaces. Potential Anal 60, 79–137 (2024). https://doi.org/10.1007/s11118-022-10039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-10039-4

Keywords

Mathematics Subject Classification (2010)

Navigation