Skip to main content
Log in

Equivalence of Sharp Trudinger-Moser Inequalities in Lorentz-Sobolev Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

The critical and subcritical Trudinger-Moser inequalities in Lorentz Sobolev space have been studied by Cassani and Tarsi (Asymptot. Anal. 64(1-2):29–51, 2009), Lu and Tang (Adv. Nonlinear Stud. 16(3):581–601, 2016). In this paper, we will prove that these critical and subcritical Trudinger-Moser inequalities are actually equivalent and thus extend those equivalence results of Lam et al. (Rev. Mat. Iberoam 33(4):1219–1246, 2017) into Lorentz Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \(\mathbb {R}^{N}\) and their best exponents. Proc. Amer. Math. Soc. 128, 2051–2057 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, D.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. (2) 128(2), 385–398 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvino, A., Ferone, V., Trombetti, G.: Moser-type inequalities in Lorentz spaces. Potential Anal. 5, 273–299 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Cassani, D., Tarsi, C.: A Moser-type inequality in Lorentz-Sobolev spaces for unbounded domains in \(\mathbb {R}^{N}\). Asymptot. Anal. 64(1-2), 29–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb {R}^{2}\). Comm. Partial Differ. Equ. 17(3-4), 407–435 (1992)

    Article  MathSciNet  Google Scholar 

  6. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of. J. Moser. Bull. Sci. Math. (2) 110(2), 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  7. Chen, L., Li, J., Lu, G., Zhang, C.: Sharpened Adams inequality and ground state solutions to the bi-Laplacian equation in R4. Adv. Nonlinear Stud. 18(3), 429–452 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohn, W.S., Lu, G.: Best constants for Trudinger-Moser inequalities on the Heisenberg group. Indiana Univ. Math. J. 50(4), 1567–1591 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. do Ó, J.M.: N-Laplacian equations in \(\mathbb {R}^{N}\) with critical growth. Abstr. Appl. Anal. 2(3-4), 301–315 (1997)

    Article  MathSciNet  Google Scholar 

  10. Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67(3), 471–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hudson, A., Leckband, M.: A Sharp exponential inequality for Lorentz-Sobolev spaces on bounded domains. Proc. Amer. Math. Soc. 127, 2029–2033 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lam, N., Lu, G.: Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231, 3259–3287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lam, N., Lu, G.: A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255(3), 298–325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lam, N., Lu, G., Tang, H.: Sharp subcritical Moser-Trudinger inequalities on Heisenberg groups and subelliptic PDEs. Nonlinear Anal. 95, 77–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Moser-Trudinger-Adams inequalities. Rev. Mat. Iberoam 33(4), 1219–1246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y.: Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14(2), 163–192 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Li, Y.: Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A 48(5), 618–648 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \( \mathbb {R}^{n}\). Indiana Univ. Math J. 57(1), 451–480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Lu, G., Zhu, M.: Concentration-compactness principle for Trudinger-Moser inequalities on Heisenberg groups and existence of ground state solutions. Calc. Var. Partial Differential Equations 57(3), 26 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieb, E., Loss, M.: Analysis, 2nd edn., vol. 14. Amer. Math. Soc., Providence (2001)

  21. Lin, K.: Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc. 348 (7), 2663–2671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, G., Tang, H.: Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces. Adv. Nonlinear Stud. 16(3), 581–601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

  24. Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb {R}^{2}\). J. Funct. Anal. 219(2), 340–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Neil, R.: L(p, q) spaces Convolution operators. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pohožaev, S.I.: On the Sobolev Embedding in the Case Pl = N, Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964-1965. Mathematics Section, pp. 158–170. Moskov. Energet. Inst., Moscow (1965)

    Google Scholar 

  27. Stein, E., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, p. 297. Princeton University Press, Princeton (1971)

    Google Scholar 

  28. Strauss, W.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Talenti, G.: Elliptic equations and rearrangements. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3, 697–718 (1976)

    MathSciNet  MATH  Google Scholar 

  30. Trudinger, N.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  31. Yudovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. (Russian) Dokl. Akad. Nauk SSSR 138, 805–808 (1961)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the referees very much for their very careful reading and many useful comments and suggestions on the improvement of the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanli Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the author is supported by National Natural Science Foundation of China (Grant No. 11701032) and China Postdoctoral Science Foundation (Grant No. 2015M570959).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H. Equivalence of Sharp Trudinger-Moser Inequalities in Lorentz-Sobolev Spaces. Potential Anal 53, 297–314 (2020). https://doi.org/10.1007/s11118-019-09769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-019-09769-9

Keywords

Navigation