Skip to main content

Advertisement

Log in

Concentration-compactness principle for Trudinger–Moser inequalities on Heisenberg groups and existence of ground state solutions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\mathbb {H}^{n}=\mathbb {C}^{n}\times \mathbb {R}\) be the n-dimensional Heisenberg group, \(Q=2n+2\) be the homogeneous dimension of \(\mathbb {H}^{n}\). We extend the well-known concentration-compactness principle on finite domains in the Euclidean spaces of Lions (Rev Mat Iberoam 1:145–201, 1985) to the setting of the Heisenberg group \(\mathbb {H}^{n}\). Furthermore, we also obtain the corresponding concentration-compactness principle for the Sobolev space \({ HW}^{1,Q}(\mathbb {H}^{n}) \) on the entire Heisenberg group \(\mathbb {H}^{n}\). Our results improve the sharp Trudinger–Moser inequality on domains of finite measure in \(\mathbb {H}^{n}\) by Cohn and Lu (Indiana Univ Math J 50(4):1567–1591, 2001) and the corresponding one on the whole space \(\mathbb {H}^n\) by Lam and Lu (Adv Math 231:3259–3287, 2012). All the proofs of the concentration-compactness principles for the Trudinger–Moser inequalities in the literature even in the Euclidean spaces use the rearrangement argument and the Polyá–Szegö inequality. Due to the absence of the Polyá–Szegö inequality on the Heisenberg group, we will develop a different argument. Our approach is surprisingly simple and general and can be easily applied to other settings where symmetrization argument does not work. As an application of the concentration-compactness principle, we establish the existence of ground state solutions for a class of Q- Laplacian subelliptic equations on \(\mathbb {H}^{n}\):

$$\begin{aligned} -\mathrm {div}\left( \left| \nabla _{\mathbb {H}}u\right| ^{Q-2} \nabla _{\mathbb {H}}u\right) +V(\xi ) \left| u\right| ^{Q-2}u=\frac{f(u) }{\rho (\xi )^{\beta }} \end{aligned}$$

with nonlinear terms f of maximal exponential growth \(\exp (\alpha t^{\frac{Q}{Q-1}})\) as \(t\rightarrow +\infty \). All the results proved in this paper hold on stratified groups with the same proofs. Our method in this paper also provide a new proof of the classical concentration-compactness principle for Trudinger-Moser inequalities in the Euclidean spaces without using the symmetrization argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The sequence \(\left\{ u_{k}\right\} \) constructed in [17] cannot show that the supremum (1.4) is infinite for \(p=\tilde{M}_{n,u}\) (see Remark 1).

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \(\mathbb{R}^{N}\) and their best exponents. Proc. Am. Math. Soc. 128, 2051–2057 (1999)

    Article  MATH  Google Scholar 

  2. Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adimurthi, M.S.: Global compactness properties of semilinear elliptic equations with critical exponential growth. J. Funct. Anal. 175, 125–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adimurthi, O.D.: Blow-up analysis in dimension \(2\) and a sharp form of Trudinger–Moser inequality. Commun. Partial Differ. Equ. 29, 295–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balogh, Z., Manfredi, J., Tyson, J.: Fundamental solution for the \(Q\)-Laplacian and sharp Moser–Trudinger inequality in Carnot groups. J. Funct. Anal. 204, 35–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \( \mathbb{R} ^{2}\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  MATH  Google Scholar 

  7. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110(2), 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principles for Moser–Trudinger inequalities: new results and proofs. Ann. Mat. Pura Appl. 192, 225–243 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, L., Li, J., Lu, G., Zhang, C.: Sharpened Adams inequality and ground state solutions to the Bi-Laplacian in \(\mathbb{R}^4\). Adv. Nonlinear Stud. (to appear)

  10. Cohn, W.S., Lu, G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50(4), 1567–1591 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohn, W.S., Lu, G.: Best constants for Moser–Trudinger inequalities, fundamental solutions and one-parameter representation formulas on groups of Heisenberg type. Acta Math. Sin. (Engl. Ser.) 18, 375–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohn, W.S., Lam, N., Lu, G., Yang, Y.: The Moser–Trudinger inequality in unbounded domains of Heisenberg group and sub-elliptic equations. Nonlinear Anal. 75, 4483–4495 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Costa, D.G.: On a class of elliptic systems in \(\mathbb{R}^N\). Electron. J. Differ. Equ. 07, 1–14 (1994)

    Google Scholar 

  14. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \(\mathbb{R}^{2}\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995)

    Article  MATH  Google Scholar 

  15. de Figueiredo, D.G., do Ó, J.M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55, 135–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. do Ó, J.M.: N-Laplacian equations in \(\mathbb{R}^{N}\) with critical growth. Abstr. Appl. Anal 2, 301–315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. do Ó, J.M., Medeiros, E., Severo, U.: On a quasilinear nonhomogeneous elliptic equation with critical growth in \(\mathbb{R}^{n}\). J. Differ. Equ. 246, 1363–1386 (2009)

    Article  MATH  Google Scholar 

  18. do Ó, J.M., de Souza, M., de Medeiros, E., Severo, U.: An improvement for the Trudinger–Moser inequality and applications. J. Differ. Equ. 256, 1317–1349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, Y., Yang, Q.: An interpolation of Hardy inequality and Moser–Trudinger inequality on Riemannian manifolds with negative curvature. Acta Math. Sin. (Engl. Ser.) 32(7), 856–866 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, M., Lam, N., Lu, G.: Sharp weighted Trudinger–Moser and Caffarelli–Kohn–Nirenberg inequalities and their extremal functions. Nonlinear Anal. 31, 297–314 (2014)

    MATH  Google Scholar 

  21. Dong, M., Lu, G.: Best constants and existence of maximizers for weighted Trudinger–Moser inequalities. Calc. Var. Partial Differ. Equ. 55(4), Art. 88 (2016)

  22. Flucher, M.: Extremal functions for the Trudinger–Moser inequality in \(2\) dimensions. Comment. Math. Helv. 67, 471–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ishiwata, M., Nakamura, M., Wadade, H.: On the sharp constant for the weighted Trudinger–Moser type inequality of the scaling invariant form. Ann. Inst. H. Poincar Anal. Non Linaire 31(2), 297–314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1, 1–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lam, N., Lu, G., Zhang, L.: Existence and nonexistence of extremal functions for sharp Trudinger–Moser inequalities. Preprint

  26. Lam, N.: Sharp subcritical and critical Trudinger–Moser inequalities on R2 and their extremal functions. Potential Anal. 46(1), 75–103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lam, N.: Maximizers for the singular Trudinger–Moser inequalities in the subcritical cases. Proc. Am. Math. Soc. 145(11), 4885–4892 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of \(N\)-Laplacian type with critical exponential growth in \(\mathbb{R}^{N}\). J. Funct. Anal. 262(3), 1132–1165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lam, N., Lu, G.: Sharp Moser–Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231, 3259–3287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255(3), 298–325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz conditions. J. Geom. Anal. 24(1), 118–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lam, N., Lu, G.: Sharp constants and optimizers for a class of Caffarelli–Kohn–Nirenberg inequalities. Adv. Nonlinear Stud. 17(3), 457–480 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lam, N., Lu, G., Tang, H.: On nonuniformly subelliptic equations of \(Q\)-sub-Laplacian type with critical growth in the Heisenberg group. Adv. Nonlinear Stud. 12, 659–681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lam, N., Lu, G., Tang, H.: Sharp subcritical Moser–Trudinger inequalities on Heisenberg groups and subelliptic PDEs. Nonlinear Anal. 95, 77–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lam, N., Lu, G., Tang, H.: Sharp affine and improved Moser–Trudinger–Adams type inequalities on unbounded domains in the spirit of lions. J. Geom. Anal. 27(1), 300–334 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger–Moser–Adams inequalities. Rev. Mat. Iberoam. 33(4), 1219–1246 (2017). arXiv:1504.04858

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, J., Lu, G., Zhu, M.: Concentration-compactness for Trudinger–Moser’s inequalities on Riemannian manifolds and stratified groups: a completely symmetrization-free argument. Preprint

  38. Li, Y.X.: Moser–Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14(2), 163–192 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Li, Y.X.: Remarks on the extremal functions for the Moser–Trudinger inequality. Acta Math. Sin. (Engl. Ser.) 22(2), 545–550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Y.X., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R} ^{n}\). Indiana Univ. Math. J. 57, 451–480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case, part 1. Rev. Mat. Iberoam. 1, 145–201 (1985)

    Article  MATH  Google Scholar 

  43. Lu, G., Yang, Q.: A sharp Trudinger-Moser inequality on any bounded and convex planar domain. Calc. Var. Partial Differ. Equ. 55(6), Art. 153 (2016)

  44. Lu, G.: Weighted Poincar and Sobolev inequalities for vector fields satisfying Hrmander’s condition and applications. Rev. Mat. Iberoam. 8(3), 367–439 (1992)

    Article  Google Scholar 

  45. Lu, G.: Existence and size estimates for the Green’s functions of differential operators constructed from degenerate vector fields. Commun. Partial Differ. Equ. 17(7–8), 1213–1251 (1992)

    MathSciNet  MATH  Google Scholar 

  46. Lu, G., Tang, H.: Sharp singular Trudinger–Moser inequalities in Lorentz–Sobolev spaces. Adv. Nonlinear Stud. 16(3), 581–601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lu, G., Yang, Y.: Sharp constant and extremal function for the improved Moser–Trudinger inequality involving \(L^{p}\) norm in two dimension. Discrete Contin. Dyn. Syst. 25(3), 963–979 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Malchiodi, A., Martinazzi, L.: Critical points of the Moser–Trudinger functional on a disk. J. Eur. Math. Soc. 16, 893–908 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Malchiodi, A., Ruiz, D.: New improved Moser–Trudinger inequalities and singular Liouville equations on compact surfaces. Geom. Funct. Anal. 21, 1196–1217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Manfredi, J.J., Vera De Serio, V.N.: Rearrangements in Carnot groups. Preprint

  51. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970–1971)

  52. Pohožaev, S.I.: On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\). Dokl. Akad. Nauk SSSR. 165, 36–39 (1965). (Russian)

    MathSciNet  Google Scholar 

  53. Rabinowitz, P.H.: On a class of nonlinear Schrodinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \( \mathbb{R} ^{2}\). J. Funct. Anal. 219, 340–367 (2004)

    Article  MATH  Google Scholar 

  55. Struwe, M.: Critical points of embeddings of \(H^{1, n}_0\) into Orlicz spaces. Ann. Inst. H. Poincar Anal. Non Linaire 5(5), 425–464 (1988)

    Article  MATH  Google Scholar 

  56. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  57. Yang, Y.: Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space. J. Funct. Anal. 262, 1679–1704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yudovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk SSSR 138, 805–808 (1961). (Russian)

    MathSciNet  Google Scholar 

  59. Zhang, C., Chen, L.: Concentration-compactness principle of singular Trudinger–Moser inequalities in \(\mathbb{R}^n\) and \(n-\)Laplace equations. Adv. Nonlinear Stud. (2017). https://doi.org/10.1515/ans-2017-6041

  60. Zhu, J.: Improved Moser–Trudinger inequality involving \(L^{p}\) norm in \(n\) dimensions. Adv. Nonlinear Stud. 14, 273–293 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the referee for his or her comments which improve its exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maochun Zhu.

Additional information

Communicated by A. Malchiodi.

M. Zhu was partly supported by Natural Science Foundation of China (11601190), Natural Science Foundation of Jiangsu Province (BK20160483) and Jiangsu University Foundation Grant (16JDG043). J. Li and G. Lu was partly supported by a US National Science Foundation Grant DMS No. 1700918, a Collaboration Grant No. 519099 and a Simons Fellowship from the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lu, G. & Zhu, M. Concentration-compactness principle for Trudinger–Moser inequalities on Heisenberg groups and existence of ground state solutions. Calc. Var. 57, 84 (2018). https://doi.org/10.1007/s00526-018-1352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1352-8

Mathematics Subject Classification

Navigation