Skip to main content
Log in

A Note on the Volume Growth Criterion for Stochastic Completeness of Weighted Graphs

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

This paper gives complementary results of Folz (Trans Am Math Soc, 2013). We first generalize the weak Omori–Yau maximum principle to the setting of strongly local Dirichlet forms. As an application, we obtain an analytic approach to compare the stochastic completeness of a weighted graph with that of an associated metric graph. This comparison result played an essential role in the volume growth criterion of Folz (Trans Am Math Soc, 2013), who first proved it via a probabilistic approach. We also give an alternative analytic proof based on a criterion in Fukushima et al. (1994).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C., Bessa, G.P.: Stochastic completeness and volume growth. Proc. Am. Math. Soc. 138(7), 2629–2640 (2010)

    Article  MATH  Google Scholar 

  2. Biroli, M., Mosco, U.: Formes de Dirichlet et estimations structurelles dans les milieux discontinus. C. R. Acad. Sci. Paris Sér. I Math. 313(9), 593–598 (1991)

    MATH  MathSciNet  Google Scholar 

  3. Biroli, M., Mosco, U.: A Saint–Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl. 169(4), 125–181 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. In: Universitext. Springer, New York (2011)

    Google Scholar 

  5. Chung, K.L.: Markov chains with stationary transition probabilities, 2nd edn. In: Die Grundlehren der Mathematischen Wissenschaften, Band 104. Springer, New York, Inc., New York (1967)

    Google Scholar 

  6. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32–74 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davies, E.B.: Heat kernels and spectral theory. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  8. Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math. 58, 99–119 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Colin de Verdière, Y.: Spectres de graphes. In: Cours Spécialisés [Specialized Courses], vol. 4. Société Mathématique de France, Paris (1998)

    Google Scholar 

  10. Dodziuk, J.: Elliptic operators on infinite graphs. In: Analysis, Geometry and Topology of Elliptic Operators, pp. 353–368. World Sci. Publ., Hackensack, NJ (2006)

    Chapter  Google Scholar 

  11. Dodziuk, J., Mathai, V.: Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians. In: The Ubiquitous Heat Kernel, Contemp. Math., vol. 398, pp. 69–81. Amer. Math. Soc., Providence, RI (2006)

    Chapter  Google Scholar 

  12. Feller, W.: Boundaries induced by non-negative matrices. Trans. Am. Math. Soc. 83, 19–54 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feller, W.: On boundaries and lateral conditions for the Kolmogorov differential equations. Ann. Math. 65(2), 527–570 (1957). MR 0090928 (19,892b)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1966)

    MATH  Google Scholar 

  15. Folz, M.: Volume growth and stochastic completeness of graphs. Trans. Am. Math. Soc. arXiv:1201.5908 (2013, to appear). Accessed 21 April 2012

  16. Folz, M.: Gaussian upper bounds for heat kernels of continuous time simple random walks. Electr. J. Probab. 16, 1693–1722 (2011)

    MATH  MathSciNet  Google Scholar 

  17. Frank, R., Lenz, D., Wingert, D.: Intrinsic metrics for (non-local) symmetric Dirichlet forms and applications to spectral theory. arXiv:1012.5050v1 (2010). Accessed 22 Dec 2010

  18. Freedman, D.: Markov Chains. Holden-Day, San Francisco, California (1971)

    MATH  Google Scholar 

  19. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  20. Grigor’yan, A.: On stochastically complete manifolds. DAN SSSR 290, 534–537 (1986, in Russian). Engl. transl.: Sov. Math. Dokl. 34(2), 310–313 (1987)

  21. Grigor’yan, A.: Stochastically complete manifolds and summable harmonic functions. Izv. Akad. Nauk SSSR Ser. Mat. 52(5), 1102–1108, 1120 (1988)

    Google Scholar 

  22. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Grigor’yan, A.: Heat kernel and analysis on manifolds. In: AMS-IP Studies in Advanced Mathematics, vol. 47 (2009)

  24. Grigor’yan, A., Hu, J.: Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174(1), 81–126 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grigor’yan, A., Huang, X., Masamune, J.: On stochastic completeness of jump processes. Math. Z. 271(3–4), 1211–1239 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Haeseler, S.: Heat kernel estimates and related inequalities on metric graphs. arXiv:1101.3010 [math-ph] (2011). Accessed 15 Jan 2011

  27. Hsu, E.P.: Heat semigroup on a complete Riemannian manifold. Ann. Probab. 17, 1248–1254 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Huang, X.: On uniqueness class for a heat equation on graphs. J. Math. Anal. Appl. 393(2), 377–388 (2011)

    Article  Google Scholar 

  29. Huang, X.: Stochastic incompleteness for graphs and weak Omori–Yau maximum principle. J. Math. Anal. Appl. 379(2), 764–782 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Huang, X.: Escape rate of markov chains on infinite graphs. J. Theory Probab. (2012). doi:10.1007/s10959-012-0456-x

    Google Scholar 

  31. Huang, X., Keller, M., Masamune, J., Wojciechowski, R.K.: A note on self-adjoint extensions of the laplacian on weighted graphs. arXiv:1208.6358v1 [math.FA] (2012). Accessed 31 Aug 2012

  32. Le Jan, Y.: Mesures associées à une forme de Dirichlet. Appl. Bull. Soc. Math. France 106(1), 61–112 (1978)

    Google Scholar 

  33. Karp, L., Li, P.: The heat equation on complete Riemannian manifolds. http://math.uci.edu/~pli/heat.pdf (1983). Accessed 19 April 2013

  34. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012)

    MATH  MathSciNet  Google Scholar 

  35. Khas’minskii, R.Z.: Ergodic properties of recurrent diffusion processes and stabilization of solutions to the Cauchy problem for parabolic equations. Theory Probab. Appl. 5, 179–195 (1960)

    Article  Google Scholar 

  36. Kuchment, P.: Quantum graphs. I. Some basic structures. Waves Random Media 14(1), S107–S128 (2004). Special section on quantum graphs

    Article  MathSciNet  Google Scholar 

  37. Kuchment, P.: Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A 38(22), 4887–4900 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Masamune, J., Uemura, T.: Conservation property of symmetric jump processes. Ann. Inst. Henri. Poincare Probab. Stat. 47(3), 650–662 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Masamune, J., Uemura, T., Wang, J.: On the conservativeness and recurrence of symmetric jump-diffusions. J. Funct. Anal. 263(12), 3984–4008 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131(4), 1283–1288 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pigola, S., Rigoli, M., Setti, A.G.: Volume growth, “a priori” estimates, and geometric applications. Geom. Funct. Anal. 13(6), 1302–1328 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822), x+99 (2005)

    MathSciNet  Google Scholar 

  44. Reuter, G.E.H.: Denumerable Markov processes and the associated contraction semigroups on l. Acta Math. 97, 1–46 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  45. Richardson, W.: Steepest descent and the least C for Sobolev’s inequality. Bull. Lond. Math. Soc. 18(5), 478–484 (1986)

    Article  MATH  Google Scholar 

  46. Shiozawa, Y.: Conservation property of symmetric jump-diffusion processes. Forum Math. (2012). doi:10.1515/forum-2012-0043

    Google Scholar 

  47. Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MATH  MathSciNet  Google Scholar 

  48. Takeda, T.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26(3), 605–623 (1989)

    MATH  MathSciNet  Google Scholar 

  49. Watanabe, K., Kametaka, Y., Nagai, A., Takemura, K., Yamagishi, H.: The best constant of Sobolev inequality on a bounded interval. J. Math. Anal. Appl. 340(1), 699–706 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  50. Weber, A.: Analysis of the laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370, 146–158 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  51. Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58(3), 1419–1441 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. Wojciechowski, R.K.: Stochastically incomplete manifolds and graphs. Progr. Probab. 64, 163–179 (2011)

    MathSciNet  Google Scholar 

  53. Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueping Huang.

Additional information

Research supported by Project CRC701.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X. A Note on the Volume Growth Criterion for Stochastic Completeness of Weighted Graphs. Potential Anal 40, 117–142 (2014). https://doi.org/10.1007/s11118-013-9342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-013-9342-0

Keywords

Mathematics Subject Classifications (2010)

Navigation