Skip to main content
Log in

Stochastic Completeness of Graphs: Bounded Laplacians, Intrinsic Metrics, Volume Growth and Curvature

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The goal of this article is to survey various results concerning stochastic completeness of graphs. In particular, we present a variety of formulations of stochastic completeness and discuss how a discrepancy between uniqueness class and volume growth criteria in the continuous and discrete settings was ultimately resolved via the use of intrinsic metrics. Along the way, we discuss some equivalent notions of boundedness in the sense of geometry and of analysis. We also discuss various curvature criteria for stochastic completeness and discuss how weakly spherically symmetric graphs establish the sharpness of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adriani, A., Setti, A.G.: Curvatures and volume of graphs. arXiv: 2009.12814

  2. Alon, N., Milman, V.D.: \(\lambda _{1}\), isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38(1), 73–88 (1985). https://doi.org/10.1016/0095-8956(85)90092-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Azencott, R.: Behavior of diffusion semi-groups at infinity. Bull. Soc. Math. France 102, 193–240 (1974)

    Article  MathSciNet  Google Scholar 

  4. Bakry, D., Émery, M.: Diffusions Hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math, vol. 113, pp. 177–206. Springer, Berlin (1985). https://doi.org/10.1007/BFb0075847. French

    Book  Google Scholar 

  5. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014)

    MATH  Google Scholar 

  6. Bauer, F., Keller, M., Wojciechowski, R.: Cheeger inequalities for unbounded graph Laplacians. J. Eur. Math. Soc. (JEMS) 17(2), 259–271 (2015). https://doi.org/10.4171/JEMS/503

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnefont, M., Golénia, S.: Essential spectrum and Weyl asymptotics for discrete Laplacians. Ann. Fac. Sci. Toulouse Math. (6) 24, 563–624 (2015). https://doi.org/10.5802/afst.1456. (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourne, D.P., Cushing, D., Liu, S., Münch, F., Peyerimhoff, N.: Ollivier–Ricci idleness functions of graphs. SIAM J. Discrete Math. 32(2), 1408–1424 (2018). https://doi.org/10.1137/17M1134469

    Article  MathSciNet  MATH  Google Scholar 

  9. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  10. Cheeger, J.: A Lower Bound for the Smallest Eigenvalue of the Laplacian, Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton University Press, Princeton (1970)

    Google Scholar 

  11. Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)

    Article  MathSciNet  Google Scholar 

  12. Cushing, D., Liu, S., Münch, F., Peyerimhoff, N.: Curvature Calculations for Antitrees, Analysis and Geometry on Graphs and Manifolds, London Math. Soc. Lecture Note Ser, vol. 461. Cambridge Univ. Press, Cambridge (2020)

    Google Scholar 

  13. Davies, E.B.: \(L^{1}\) properties of second order elliptic operators. Bull. Lond. Math. Soc. 17(5), 417–436 (1985). https://doi.org/10.1112/blms/17.5.417

    Article  MATH  Google Scholar 

  14. Davies, E.B.: Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  15. Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math. 58, 99–119 (1992). https://doi.org/10.1007/BF02790359. Festschrift on the occasion of the 70th birthday of Shmuel Agmon

    Article  MathSciNet  MATH  Google Scholar 

  16. do Carmo, M.P.: Riemannian Geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc, Boston (1992)

    Book  Google Scholar 

  17. Dodziuk, J.: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32(5), 703–716 (1983). https://doi.org/10.1512/iumj.1983.32.32046

    Article  MathSciNet  MATH  Google Scholar 

  18. Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984). https://doi.org/10.2307/1999107

    Article  MathSciNet  MATH  Google Scholar 

  19. Dodziuk, J.: Elliptic Operators on Infinite Graphs, Analysis, Geometry and Topology of Elliptic Operators, pp. 353–368. World Sci. Publ, Hackensack, NJ (2006)

    Book  Google Scholar 

  20. Dodziuk, J., Karp, L.: Spectral and Function Theory for Combinatorial Laplacians, Geometry of Random Motion (Ithaca, N.Y., : Contemp. Math.), pp. 25–40. American Mathematical Society, Providence (1987). https://doi.org/10.1090/conm/073/954626

    Book  Google Scholar 

  21. Dodziuk, J., Mathai, V.: Kato’s Inequality and Asymptotic Spectral Properties for Discrete Magnetic Laplacians, The ubiquitous Heat Kernel, Contemp Math, pp. 69–81. American Mathematical Society, Providence, RI (2006)

    MATH  Google Scholar 

  22. Feller, W.: Diffusion processes in one dimension. Trans. Am. Math. Soc. 77, 1–31 (1954). https://doi.org/10.2307/1990677

    Article  MathSciNet  MATH  Google Scholar 

  23. Feller, W.: On boundaries and lateral conditions for the Kolmogorov differential equations. Ann. Math. (2) 65, 527–570 (1957). https://doi.org/10.2307/1970064

    Article  MathSciNet  MATH  Google Scholar 

  24. Folz, M.: Gaussian upper bounds for heat kernels of continuous time simple random walks. Electron. J. Probab. 16(62), 1693–1722 (2011). https://doi.org/10.1214/EJP.v16-926

    Article  MathSciNet  MATH  Google Scholar 

  25. Folz, M.: Volume growth and stochastic completeness of graphs. Trans. Am. Math. Soc. 366(4), 2089–2119 (2014). https://doi.org/10.1090/S0002-9947-2013-05930-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Frank, R.L., Lenz, D., Wingert, D.: Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory. J. Funct. Anal. 266(8), 4765–4808 (2014). https://doi.org/10.1016/j.jfa.2014.02.008

    Article  MathSciNet  MATH  Google Scholar 

  27. Fukushima, M.: Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (1994)

    Book  Google Scholar 

  28. Gaffney, P.M.: The conservation property of the heat equation on Riemannian manifolds. Commun. Pure Appl. Math. 12, 1–11 (1959). https://doi.org/10.1002/cpa.3160120102

    Article  MathSciNet  MATH  Google Scholar 

  29. Georgakopoulos, A., Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.K.: Graphs of finite measure. J. Math. Pures Appl. (9) 103, 1093–1131 (2015). https://doi.org/10.1016/j.matpur.2014.10.006. (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  30. Golénia, S.: Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians. J. Funct. Anal. 266(5), 2662–2688 (2014). https://doi.org/10.1016/j.jfa.2013.10.012

    Article  MathSciNet  MATH  Google Scholar 

  31. Grigor’yan, A.A.: Stochastically complete manifolds. Dokl. Akad. Nauk SSSR 290(3), 534–537 (1986). (Russian)

    MathSciNet  Google Scholar 

  32. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 36(2), 135–249 (1999). https://doi.org/10.1090/S0273-0979-99-00776-4

    Article  MathSciNet  MATH  Google Scholar 

  33. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, International Press, Providence, RI (2009)

    Google Scholar 

  34. Grigor’yan, A., Huang, X., Masamune, J.: On stochastic completeness of jump processes. Math. Z. 271(3–4), 1211–1239 (2012). https://doi.org/10.1007/s00209-011-0911-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Güneysu, B., Keller, M., Schmidt, M.: A Feynman-Kac-Itô formula for magnetic Schrödinger operators on graphs. Probab. Theory Related Fields 165(1–2), 365–399 (2016). https://doi.org/10.1007/s00440-015-0633-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Haeseler, S., Keller, M.: Generalized solutions and spectrum for Dirichlet forms on graphs. In: Random Walks, Boundaries and Spectra. Progr Probab., vol. 64, pp. 181–199. Birkhäuser/Springer Basel AG Basel, Basel (2011)

    Book  Google Scholar 

  37. Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectr. Theory 2(4), 397–432 (2012)

    Article  MathSciNet  Google Scholar 

  38. Has’minskiĭ, R.Z.: Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Teor. Verojatnost. i Primenen. 5, 196–214 (1960). (Russian, with English summary)

    MathSciNet  Google Scholar 

  39. Hsu, P.: Heat semigroup on a complete Riemannian manifold. Ann. Probab. 17(3), 1248–1254 (1989)

    Article  MathSciNet  Google Scholar 

  40. Hua, B., Huang, X.: A survey on unbounded Laplacians and intrinsic metrics on graphs

  41. Hua, B., Lin, Y.: Stochastic completeness for graphs with curvature dimension conditions. Adv. Math. 306, 279–302 (2017). https://doi.org/10.1016/j.aim.2016.10.022

    Article  MathSciNet  MATH  Google Scholar 

  42. Hua, B., Münch, F.: Ricci curvature on birth-death processes. arXiv: 1712.01494

  43. Hua, B., Masamune, J., Wojciechowski, R.K.: Essential self-adjointness and the L 2 -Liouville property. arXiv:2012.08936

  44. Huang, X.: On stochastic completeness of weighted graphs. Thesis (Ph.D.)-Bielefeld University (2011)

  45. Huang, X.: Stochastic incompleteness for graphs and weak Omori–Yau maximum principle. J. Math. Anal. Appl. 379(2), 764–782 (2011). https://doi.org/10.1016/j.jmaa.2011.02.009

    Article  MathSciNet  MATH  Google Scholar 

  46. Huang, X.: On uniqueness class for a heat equation on graphs. J. Math. Anal. Appl. 393(2), 377–388 (2012). https://doi.org/10.1016/j.jmaa.2012.04.026

    Article  MathSciNet  MATH  Google Scholar 

  47. Huang, X.: Escape rate of Markov chains on infinite graphs. J. Theoret. Probab. 27(2), 634–682 (2014). https://doi.org/10.1007/s10959-012-0456-x

    Article  MathSciNet  MATH  Google Scholar 

  48. Huang, X.: A note on the volume growth criterion for stochastic completeness of weighted graphs. Potential Anal. 40(2), 117–142 (2014). https://doi.org/10.1007/s11118-013-9342-0

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang, X., Shiozawa, Y.: Upper escape rate of Markov chains on weighted graphs. Stoch. Process. Appl. 124(1), 317–347 (2014). https://doi.org/10.1016/j.spa.2013.08.004

    Article  MathSciNet  MATH  Google Scholar 

  50. Huang, X., Keller, M., Masamune, J., Wojciechowski, R.K.: A note on self-adjoint extensions of the Laplacian on weighted graphs. J. Funct. Anal. 265(8), 1556–1578 (2013). https://doi.org/10.1016/j.jfa.2013.06.004

    Article  MathSciNet  MATH  Google Scholar 

  51. Huang, X., Keller, M., Schmidt, M.: On the uniqueness class, stochastic completeness and volume growth for graphs. Trans. Am. Math. Soc. 373(12), 8861–8884 (2020). https://doi.org/10.1090/tran/8211

    Article  MathSciNet  MATH  Google Scholar 

  52. Ichihara, K.: Curvature, geodesics and the Brownian motion on a Riemannian manifold. II. Explosion properties. Nagoya Math. J. 87, 115–125 (1982)

    Article  MathSciNet  Google Scholar 

  53. Karp, L., Li, P.: The heat equation on complete Riemannian manifolds (unpublished manuscript)

  54. Keller, M.: Intrinsic metrics on graphs: a survey. In: Mathematical Technology of Networks. Springer Springer Proc. Math. Stat., vol. 128, pp. 81–119. Springer, Cham (2015)

    Google Scholar 

  55. Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5(4), 198–224 (2010). https://doi.org/10.1051/mmnp/20105409

    Article  MathSciNet  MATH  Google Scholar 

  56. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012). https://doi.org/10.1515/CRELLE.2011.122

    Article  MathSciNet  MATH  Google Scholar 

  57. Keller, M., Münch, F.: A new discrete Hopf–Rinow theorem. Discrete Math. 342(9), 2751–2757 (2019). https://doi.org/10.1016/j.disc.2019.03.014

    Article  MathSciNet  MATH  Google Scholar 

  58. Keller, M., Münch, F.: Gradient estimates, Bakry–Emery Ricci curvature and ellipticity for unbounded graph Laplacians. arXiv:1807.10181

  59. Keller, M., Lenz, D., Wojciechowski, R.K.: Volume growth, spectrum and stochastic completeness of infinite graphs. Math. Z. 274(3–4), 905–932 (2013). https://doi.org/10.1007/s00209-012-1101-1

    Article  MathSciNet  MATH  Google Scholar 

  60. Keller, M., Lenz, D., Wojciechowski, R.K. (eds.): Analysis and Geometry on Graphs and Manifolds, London Mathematical Society Lecture Note Series, vol. 461. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  61. Lenz, D., Schmidt, M., Wirth, M.: Uniqueness of form extensions and domination of semigroups, J. Funct. Anal. 280(6), 108848 (2021). https://doi.org/10.1016/j.jfa.2020.108848.

  62. Lin, Y., Yau, S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)

    Article  MathSciNet  Google Scholar 

  63. Lin, Y., Linyuan, L., Yau, S.-T.: Ricci curvature of graphs. Tohoku Math. J. (2) 63(4), 605–627 (2011). https://doi.org/10.2748/tmj/1325886283

    Article  MathSciNet  MATH  Google Scholar 

  64. Liu, S., Münch, F., Peyermihoff, N.: Bakry–Émery curvature and diameter bounds on graphs. Calc. Var. Partial Differ. Equ. 57, 9 (2018). https://doi.org/10.1007/s00526-018-1334-x

  65. Mari, L., Valtorta, D.: On the equivalence of stochastic completeness and Liouville and Khas’minskii conditions in linear and nonlinear settings. Trans. Am. Math. Soc. 365(9), 4699–4727 (2013). https://doi.org/10.1090/S0002-9947-2013-05765-0

    Article  MathSciNet  MATH  Google Scholar 

  66. Masamune, J., Schmidt, M.: A generalized conservation property for the heat semigroup on weighted manifolds. Math. Ann. 377(3–4), 1673–1710 (2020). https://doi.org/10.1007/s00208-019-01888-3

    Article  MathSciNet  MATH  Google Scholar 

  67. Masamune, J., Uemura, T.: Conservation property of symmetric jump processes. Ann. Inst. Henri Poincaré Probab. Stat. 47(3), 650–662 (2011). https://doi.org/10.1214/09-AIHP368. (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  68. Masamune, J., Uemura, T., Wang, J.: On the conservativeness and the recurrence of symmetric jump-diffusions. J. Funct. Anal. 263(12), 3984–4008 (2012). https://doi.org/10.1016/j.jfa.2012.09.014

    Article  MathSciNet  MATH  Google Scholar 

  69. Münch, F.: Li-Yau inequality under CD(0,n) on graphs. arXiv:1909.10242

  70. Münch, F., Wojciechowski, R.K.: Ollivier Ricci curvature for general graph Laplacians: heat equation, Laplacian comparison, non-explosion and diameter bounds. Adv. Math. 356, 106759 (2019). https://doi.org/10.1016/j.aim.2019.106759

    Article  MathSciNet  MATH  Google Scholar 

  71. Ollivier, Y.: Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris 345(11), 643–646 (2007). https://doi.org/10.1016/j.crma.2007.10.041. (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  72. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009). https://doi.org/10.1016/j.jfa.2008.11.001

    Article  MathSciNet  MATH  Google Scholar 

  73. Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967). https://doi.org/10.2969/jmsj/01920205

    Article  MathSciNet  MATH  Google Scholar 

  74. Pigola, S., Setti, A.G.: The Feller property on Riemannian manifolds. J. Funct. Anal. 262(5), 2481–2515 (2012). https://doi.org/10.1016/j.jfa.2011.12.001

    Article  MathSciNet  MATH  Google Scholar 

  75. Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131(4), 1283–1288 (2003). https://doi.org/10.1090/S0002-9939-02-06672-8

    Article  MathSciNet  MATH  Google Scholar 

  76. Pucher, S.: Masterarbeit-Jena University

  77. Reuter, G.E.H.: Denumerable Markov processes and the associated contraction semigroups on l. Acta Math. 97, 1–46 (1957). https://doi.org/10.1007/BF02392391

    Article  MathSciNet  MATH  Google Scholar 

  78. Schmidt, M.: Global properties of Dirichlet forms on discrete spaces. Dissertationes Math. 522, 43 (2017). https://doi.org/10.4064/dm738-7-2016

    Article  MathSciNet  MATH  Google Scholar 

  79. Schmidt, M.: On the Existence and Uniqueness of Self-adjoint Realizations of Discrete (Magnetic) Schrödinger Operators, Analysis and Geometry on Graphs and Manifolds. London Math. Soc. Lecture Note Ser, vol. 461. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  80. Schmuckenschläger, M.: Curvature of Nonlocal Markov Generators, Convex Geometric Analysis, vol. 128, pp. 189–197. Cambridge University Press (1999), Cambridge (1996)

    MATH  Google Scholar 

  81. Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983). https://doi.org/10.1016/0022-1236(83)90090-3

    Article  MathSciNet  MATH  Google Scholar 

  82. Sturm, K.-T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^{p}\) -Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994). https://doi.org/10.1515/crll.1994.456.173

    Article  MathSciNet  MATH  Google Scholar 

  83. Takeda, M.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26(3), 605–623 (1989)

    MathSciNet  MATH  Google Scholar 

  84. Varopoulos, N.T.: Potential theory and diffusion on Riemannian manifolds, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, pp. 821–837 (1983)

  85. Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  86. Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370(1), 146–158 (2010). https://doi.org/10.1016/j.jmaa.2010.04.044

    Article  MathSciNet  MATH  Google Scholar 

  87. Weidmann, J.: Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, vol. 68. Springer, New York (1980). Translated from the German by Joseph Szücs

    Book  Google Scholar 

  88. Wojciechowski, R.K.: Stochastic completeness of graphs, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-City University of New York (2008)

  89. Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58(3), 1419–1441 (2009). https://doi.org/10.1512/iumj.2009.58.3575

    Article  MathSciNet  MATH  Google Scholar 

  90. Wojciechowski, R.K.: Stochastically Incomplete Manifolds and Graphs, Random Walks, Boundaries and Spectra. Progr. Probab, vol. 64, pp. 163–179. Birkhäuser/Springer Basel AG, Basel (2011)

    Book  Google Scholar 

  91. Wojciechowski, R.K.: The Feller property for graphs. Trans. Am. Math. Soc. 369(6), 4415–4431 (2017). https://doi.org/10.1090/tran/6901

    Article  MathSciNet  MATH  Google Scholar 

  92. Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975). https://doi.org/10.1002/cpa.3160280203

    Article  MathSciNet  MATH  Google Scholar 

  93. Yau, S.T.: On the heat kernel of a complete Riemannian manifold. J. Math. Pures Appl. (9) 57(2), 191–201 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Józef Dodziuk for suggesting such a fruitful area of study and for sustaining me over the years. I am also happy to acknowledge the inspiration and support offered by Isaac Chavel and Leon Karp. Furthermore, I would like to thank Alexander Grigor\('\)yan for encouragement and support, early in my career up until the present moment. And also many thanks to my coauthors who contributed to this story and whom I also consider to be good friends. In alphabetical order: Sebastian Haeseler, Bobo Hua, Xueping Huang, Matthias Keller, Daniel Lenz, Jun Masamune, Florentin Münch and Marcel Schmidt. Finally, I would like to thank Isaac Pesenson for the invitation to contribute this article and the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław K. Wojciechowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author gratefully acknowledges financial support from PSC-CUNY Awards, jointly funded by the Professional Staff Congress and the City University of New York, and the Collaboration Grant for Mathematicians, funded by the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojciechowski, R.K. Stochastic Completeness of Graphs: Bounded Laplacians, Intrinsic Metrics, Volume Growth and Curvature. J Fourier Anal Appl 27, 30 (2021). https://doi.org/10.1007/s00041-021-09821-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09821-6

Keywords

Mathematics Subject Classification

Navigation