Skip to main content
Log in

A multi-modal network equilibrium model considering captive travelers and mode correlation

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

In making daily commuting trips, a part of travelers, which are called captive travelers, rely on one transport mode due to a lack of access or affordability to other transport modes. To account for the effect of such captive travelers on network equilibrium performances, this paper proposes a multi-modal network equilibrium (MMNE) model that accounts for the captive travelers and the correlations between modes and between routes. First, a hybrid mode choice model is developed by integrating the dogit and nested logit (NL) models. The hybrid dogit–NL (DNL) model has smaller direct and cross elasticity than the NL model, it alleviates the property of irrelevant from independent alternatives and takes the dogit and NL modal splits as bounds. Second, the path-size logit (PSL) model is adopted for predicting travelers’ route choices with overlapping routes. The DNL–PSL MMNE model is formulated as a mathematical programming problem that admits an equivalent and unique solution. Then, a partial linearization algorithm with the Barzilai–Borwein (BB) step sizes is developed. The numerical results reveal that captive travelers lead to lower sensitivity toward transport policies and may cause higher network total travel time; while the perception of mode similarity may impair the overall attractiveness of modes with a high degree of similarity. The observations indicate that to promote green transportation, policy efforts should be made to make use of or adjust the captivity structure and produce diversified perceptions of and preferences for different green transport modes. The BB step sizes are suggested for low travel demand cases when solving the combined travel choice problems. Further, extensions of the DNL model with bundle captivities are discussed. The results of the paper help improve the network equilibrium prediction and support transport policymaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16, 1–3 (1966)

    Article  Google Scholar 

  • Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. Ima J. Num. Anal. 8, 141–148 (1988)

    Article  Google Scholar 

  • Beimborn, E.A., Greenwald, M.J., Jin, X.: Accessibility, connectivity, and captivity: impacts on transit choice. Transp. Res. Rec. 1835, 1–9 (2003). https://doi.org/10.3141/1835-01

    Article  Google Scholar 

  • Bekhor, S., Toledo, T., Prashker, J.N.: Effects of choice set size and route choice models on path-based traffic assignment. Transportmetrica 4, 117–133 (2008)

    Article  Google Scholar 

  • Ben-Akiva, M., Bierlaire, M.: Discrete Choice Methods and Their Applications to Short Term Travel Decisions, pp. 5–33. Springer, Boston (1999)

    Google Scholar 

  • Ben-Akiva, M., Boccara, B.: Discrete choice models with latent choice sets. Int. J. Res. Mark. 12, 9–24 (1995)

    Article  Google Scholar 

  • Ben-Akiva, M.E., Lerman, S.R.: Discrete Choice Analysis: Theory and Application to Travel Demand. The MIT Press, Cambridge (1985)

    Google Scholar 

  • Corporation, Caliper: TransCAD Demand Modeling Manuals. Caliper Corporation, Massachusetts (2004)

    Google Scholar 

  • Cheranchery, M.F., Maitra, B.: Investigating perception of captive and choice riders for formulating service standards of ordinary and premium buses in Indian cities. Transp. Policy 72, 89–96 (2018)

    Article  Google Scholar 

  • Daganzo, C.: Multinomial Probit: The Theory and Its Application to Demand Forecasting. Academic Press, Cambridge (1979)

    Google Scholar 

  • Dial, R.B.: A probabilistic multipath traffic assignment model which obviates path enumeration. Transp. Res. 5, 83–111 (1971)

    Article  Google Scholar 

  • Du, M., Tan, H., Chen, A.: A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models. Eur. J. Oper. Res. 290, 982–999 (2021)

    Article  Google Scholar 

  • Du, M., Zhou, J., Chen, A., Tan, H.: Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes. Transp Res Part E Logist Transp Rev 168, 102937 (2022)

    Article  Google Scholar 

  • Fan, Y., Ding, J., Liu, H., Wang, Y., Long, J.: Large-scale multimodal transportation network models and algorithms-part I: the combined mode split and traffic assignment problem. Trans. Res. Part E Logist. Transp. Rev. 164, 102832 (2022)

    Article  Google Scholar 

  • Fang, D., Xue, Y., Cao, J., Sun, S.: Exploring satisfaction of choice and captive bus riders: an impact asymmetry analysis. Transp. Res. Part D Transp. Environ. 93, 102798 (2021)

    Article  Google Scholar 

  • Foley, L., Brugulat-Panés, A., Woodcock, J., Govia, I., Hambleton, I., Turner-Moss, E., Mogo, E.R., Awinja, A.C., Dambisya, P.M., Matina, S.S., Micklesfield, L., Abdool Karim, S., Ware, L.J., Tulloch-Reid, M., Assah, F., Pley, C., Bennett, N., Pujol-Busquets, G., Okop, K., Anand, T., Mba, C.M., Kwan, H., Mukoma, G., Anil, M., Tatah, L., Randall, L.: Socioeconomic and gendered inequities in travel behaviour in Africa: mixed-method systematic review and meta-ethnography. Soc. Sci. Med. 292, 114545 (2022)

    Article  Google Scholar 

  • García, R., Marín, A.: Network equilibrium with combined modes: models and solution algorithms. Transp. Res. Part B Method. 39, 223–254 (2005)

    Article  Google Scholar 

  • Gaudry: Dogit and logit models of travel mode choice in montreal. Can. J. Econ. 13, 268–279 (1980)

  • Gaundry, M.J., Dagenais, M.G.: The dogit model. Transp. Res. Part B Methodol. 13, 105–111 (1979)

    Article  Google Scholar 

  • Gu, Y., Chen, A.: Modeling mode choice of customized bus services with loyalty subscription schemes in multi-modal transportation networks. Transp. Res. Part C Emerg. Technol. 147, 104012 (2023)

    Article  Google Scholar 

  • Habib, K.M.N., Weiss, A.: Evolution of latent modal captivity and mode choice patterns for commuting trips: a longitudinal analysis using repeated cross-sectional datasets. Transp. Res. Part A Policy Pract. 66, 39–51 (2014)

    Article  Google Scholar 

  • Kitthamkesorn, S., Chen, A.: A path-size weibit stochastic user equilibrium model. Procedia Soc. Behav. Sci. 80, 608–632 (2013)

    Article  Google Scholar 

  • Kitthamkesorn, S., Chen, A.: Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices. Transp. Res. Part B Methodol. 103, 291–310 (2017)

    Article  Google Scholar 

  • Kitthamkesorn, S., Chen, A., Xu, X., Ryu, S.: Modeling mode and route similarities in network equilibrium problem with go-green modes. Netw. Spat. Econ. 16, 33–60 (2016)

    Article  Google Scholar 

  • Krizek, K.J., El-geneidy, A.: Segmenting preferences and habits of transit users and non-users. J. Public Transp. 10, 5 (2007)

    Article  Google Scholar 

  • Li, D., Miwa, T., Morikawa, T.: Considering en-route choices in utility-based route choice modelling. Netw. Spat. Econ. 14, 581–604 (2014)

    Article  Google Scholar 

  • Liu, H.X., He, X., He, B.: Method of successive weighted averages (MSWA) and self-regulated averaging schemes for solving stochastic user equilibrium problem. Netw. Spat. Econ. 9, 485 (2009)

    Article  Google Scholar 

  • Meng, Q., Liu, Z.: Impact analysis of cordon-based congestion pricing on mode-split for a bimodal transportation network. Transp. Res. Part C Emerg. Technol. 21, 134–147 (2012)

    Article  Google Scholar 

  • Patriksson, M. (ed.): The Traffic Assignment Problem: Models and Methods. VSP, Utrecht (1994)

    Google Scholar 

  • Rahman, M., Akther, M.S., Recker, W.: The first-and-last-mile of public transportation: a study of access and egress travel characteristics of Dhaka’s suburban commuters. J. Public Transp. 24, 100025 (2022)

    Article  Google Scholar 

  • Saleh, W., Al-Atawi, A.M.: Captivity to car use in Saudi Arabia : a mixed logit model analysis. Int. J. Eng. Res. Appl. 5, 82–90 (2015)

    Google Scholar 

  • Srinivasan, K.K., Pradhan, G.N., Naidu, G.M.: Commute mode choice in a developing country. Transp. Res. Rec. 2038, 53–61 (2007)

    Article  Google Scholar 

  • Swait, J., Ben-Akiva, M.: Analysis of the effects of captivity on travel time and cost elasticities. In: Behavioural Research for Transport Policy, pp. 119–134 (1986)

  • Tan, H., Du, M., Chen, A.: Accelerating the gradient projection algorithm for solving the non-additive traffic equilibrium problem with the Barzilai-Borwein step size. Comput. Oper. Res. 141, 105723 (2022)

    Article  Google Scholar 

  • van Exel, J., Rietveld, P.: Public transport strikes and traveller behaviour. Transp. Policy 8, 237–246 (2001)

    Article  Google Scholar 

  • Venter, C.J.: Are we giving BRT passengers what they want? user preference and market segmentation in johannesburg. In: Proceedings of the 35th Southern African Transport Conference, Pretoria, South Africa, pp. 658–672 (2016)

  • Wang, G., Chen, A., Kitthamkesorn, S., Ryu, S., Qi, H., Song, Z., Song, J.: A multi-modal network equilibrium model with captive mode choice and path size logit route choice. Transp. Res. Part A Policy Pract. 136, 293–317 (2020)

    Article  Google Scholar 

  • Wang, G., Qi, H., Xu, H., Ryu, S.: A mixed behaviour equilibrium model with mode choice and its application to the endogenous demand of automated vehicles. J. Manag. Sci. Eng. 5, 227–248 (2020)

    Google Scholar 

  • Wang, G., Tong, K., Chen, A., Qi, H., Xu, X., Ma, S.: Impacts of the least perceived travel cost on the weibit network equilibrium. Transp. A Transp. Sci. 19, 1980131 (2023)

    Google Scholar 

  • Wang, J., Peeta, S., He, X., Zhao, J.: Combined multinomial logit modal split and paired combinatorial logit traffic assignment model. Transp. A Transp. Sci. 14, 737–760 (2018)

    Google Scholar 

  • Wu, Z.X., Lam, W.H.K.: Combined modal split and stochastic assignment model for congested networks with motorized and nonmotorized transport modes. Transp. Res. Rec. 1831, 57–64 (2003)

    Article  Google Scholar 

  • Zhao, P., Gao, Y.: Public transit travel choice in the post Covid-19 pandemic era: an application of the extended theory of planned behavior. Travel Behav. Soc. 28, 181–195 (2022)

    Article  Google Scholar 

Download references

Funding

The study was funded by the National Natural Science Foundation of China (72101085, 71801106, 71871010), the Hubei Provincial Natural Science Foundation of China (2021CFB287), China Postdoctoral Science Foundation funded project (2022M722355), Fundamental Research Funds for the Central Universities (20205170016, CCNU22JC026). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conceptualization and design: Wang, Song, Qi, Zhou, He; model development and analytical analysis: Wang, Qi, He; draft manuscript preparation: Wang, Song, Zhou; coding and preparation of numerical examples: Song, Zhou, Qi; revision: Wang, Song, Qi, Zhou, He. All authors reviewed the results and approved the final version of the manuscript. Meanwhile, the authors would like to thank the reviewer for his/her provocative comments, the first author thanks Anthony Chen for his valuable comments at a conference in Dalian, China.

Corresponding authors

Correspondence to Hang Qi or Zhengbing He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Given Assumptions 1-4 and the assumption of independently distributed Weibull-type mode disutilities, we may define the DNW–PSL MMNE model as,

$$\begin{aligned} \begin{array}{l} \begin{aligned} \min Z &{}= {Z_1}\!+\!{Z_2}\!+\!{Z_3} \!+\!{Z_4}\!+\! Z_{5}\!+\! Z_{6}\!+\!Z_{7}\\ &{}= \sum \limits _{m \in M}\sum \limits _{a \in A^{m}} {\int _{0}^{v^{ma}} {\tau ^{ma}(v)dv}} \!+\!\sum \limits _{ij\in IJ}\sum \limits _{u \in {U_{ij}}}\sum \limits _{m \in M_{ij}^u}\frac{1}{\theta _{ij}^{um}}\sum \limits _{r\in R_{ij}^{um}}f_{ij}^{umr}\left( \textrm{ln}f_{ij}^{umr}-1\right) \\ &{}\quad - \sum \nolimits _{ij\in IJ}\sum \nolimits _{u \in {U_{ij}}}\sum \limits _{m \in M_{ij}^u}\frac{1}{\theta _{ij}^{um}}\sum \limits _{r\in R_{ij}^{um}}f_{ij}^{umr}\textrm{ln}\varpi _{ij}^{umr} \\ &{}\quad +\sum \limits _{ij \in IJ} {\sum \limits _{u \in {U_{ij}}} {\sum \limits _{m \in M_{ij}^u} {\frac{1}{\theta _{ij}^{um}}\left( q_{ij}^{um} \!-\! \frac{{{d_{ij}}\eta _{ij}^{m}}}{{1 \!+\! {\sum \nolimits _{n \in M_{ij}} {\eta _{ij}^{n}} } }}\right) \left[ {\ln \left( {q_{ij}^{um} \!-\! \frac{{{d_{ij}}\eta _{ij}^{m}}}{{1 \!+\! {\sum \nolimits _{n \in M_{ij}} {\eta _{ij}^{n}} } }}} \right) \!-\! 1} \right] } } } \\ &{}\quad +\sum \limits _{ij \in IJ} {\sum \limits _{u \in {U_{ij}}} \left({\frac{1}{\varphi _{ij}^u} \!-\! \frac{1}{\theta _{ij}^{um}}}\right)\left[ {\sum \limits _{m \in M_{ij}^u} {\left( {q_{ij}^{um} \!-\! \frac{{{d_{ij}}\eta _{ij}^{m}}}{{1 \!+\! {\sum \nolimits _{n \in M_{ij}} {\eta _{ij}^{n}} } }}} \right) } } \right] } \\ &{}\quad * \left[ {\ln \sum \limits _{m \in M_{ij}^u} {\left( {q_{ij}^{um} \!-\! \frac{{{d_{ij}}\eta _{ij}^{m}}}{{1 \!+\! {\sum \limits _{n \in M_{ij}} {\eta _{ij}^{n}} } }}} \right) } \!-\! 1} \right] \\ &{}\quad -\sum \limits _{ij\in IJ}\sum \limits _{u \in {U_{ij}}}\sum \limits _{m \in M_{ij}^u}\frac{1}{\theta _{ij}^{um}}q_{ij}^{um}\left( \textrm{ln}q_{ij}^{um}-1\right) \!-\! \sum \limits _{ij \in IJ} {\sum \limits _{u \in {U_{ij}}} {\sum \limits _{m \in M_{ij}^u} {q_{ij}^{um} \ln \Psi _{ij}^{um}} } } \end{aligned} \end{array} \end{aligned}$$
(64)
$$\begin{aligned} s.t.\ \ \sum \limits _{u \in {U_{ij}}} {\sum \limits _{m \in M_{ij}^u} {q_{ij}^{um}} }= & {} {d_{ij}},\forall ij\in IJ, \end{aligned}$$
(65)
$$\begin{aligned} \sum \limits _{r \in {R_{ij}^{um}}}f_{ij}^{umr}= & {} q_{ij}^{um}, \forall m\in M_{ij}^{u}, u\in U_{ij}, ij\in IJ, \end{aligned}$$
(66)
$$\begin{aligned} q_{ij}^{um}\ge & {} 0, \forall m\in M_{ij}^{u}, u\in U_{ij}, ij\in IJ, \end{aligned}$$
(67)
$$\begin{aligned} f_{ij}^{umr}\ge & {} 0, \forall r\in R_{ij}^{um}, m\in M_{ij}^{u}, u\in U_{ij}, ij\in IJ, \end{aligned}$$
(68)

where \(Z_{1}-Z_{3}\) captures the PSL route choice problem, \(Z_{4}-Z_{7}\) captures the DNW mode choice problem. The related variables and parameters are the same as those in the DNL–PSL MMNE model. Note that, Eqs. (64)–(68) admits a unique solution that is equivalent to the DNW mode choice and PSL route choice models, the detailed proofs are similar to those for the DNL–PSL MMNE model, thus omitted here.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Song, D., Qi, H. et al. A multi-modal network equilibrium model considering captive travelers and mode correlation. Transportation (2024). https://doi.org/10.1007/s11116-024-10475-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11116-024-10475-8

Keywords

Navigation